Enrolment No._____

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 713104N Date: 05-12-2014		code: 713104N Date: 05-12-2014	
•	bject Name: Bio-Signal Processing		
Time: 10:30 am - 01:00 pm Total Marks: 70			
Instructions: 1. Attempt all questions.			
		Make suitable assumptions wherever necessary.	
		Figures to the right indicate full marks.	
Q.1	(a)	Discuss template matching techniques for classifying patterns in the ECG signal.	07 07
	(b)	Determine inverse Z transform for $X(z) = \frac{z^{-1}}{1 - 0.25z^{-1} - 0.375z^{-2}}$	07
Q.2	(a)	Write a note on design of low-pass integer filters.	07
	(b)	Give example of biomedical signals and explain biomedical signal conversion systems in detail.	07
		OR	
	(b)	Briefly describe linear phase response and piecewise-linear phase response.	07
0.2	(a)	With block diagram avalais a typical signal avarager	07
Q.3	(a) (b)	With block diagram explain a typical signal averager. Design an LPF that approximates	07 07
	()	$H_d(f) = \begin{cases} 1 & 0 \le f \le 1000 \\ 0 & elsewhere \end{cases}$	
		Sampling frequency = 8000 sps. Impulse response sequence duration limited to 2.5	
		ms. Apply hanning window function to improve magnitude response of LPF. OR	
Q.3	(a)	Explain data reduction using Fan algorithm.	07
	(b)	Design an 11 coefficients FIR low pass filter whose cut off frequency f_c equals $2f_s/11$, where f_c is compliant frequency. Dist magnitude responses of resulting filter.	07
		where f_s is sampling frequency. Plot magnitude response of resulting filter.	
Q.4	(a)	Describe portable arrhythmia monitor in detail.	07
	(b)	Convert analog filter with transfer function $H(s) = \frac{(s+2)}{(s+1)(s+3)}$ into a digital filter by	07
		means of impulse invariance method.	
0.4		OR	
Q.4	(a) (b)	Write a note on ST-segment analyzer. Describe principal noise canceler model.	07 07
	(0)	Desende principal noise canceler model.	07
Q.5	(a)	Using rubber membrane concept, discuss response for movement of poles towards	07
	(b)	center of unit circle.	07
	(b)	Determine Z-transform of the signal $x(n) = n^2 e^{-2n}$. OR	07
Q.5	(a)	Compare characteristics of FIR and IIR filter.	07
	(b)	Convert analog filter with transfer function $H(s) = \frac{s+0.1}{(s+0.1)^2+49}$ into a digital filter	07
		by means of bilinear Z-transform method. Take resonant frequency $\omega_r = \pi/2$	

by means of bilinear Z-transform method. Take resonant frequency $\omega_r = \pi/2$.