Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER - I • EXAMINATION - WINTER • 2014

Subject code: 713904N Date: 05-12-2014 Subject Name: Advanced Thermal Engineering Time: 10:30 am - 01:00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary.

- 3. Figures to the right indicate full marks.
- 4. Use of Steam table is permitted.

Q.1	(a)	Explain compressibility factor and compressibility chart.	07
	(b)	Differentiate between boiling and condensation.	07

- Differentiate between boiling and condensation. (D)
- Q.2 (a) Derive General heat conduction equation in Cartesian co-ordinates. 07
 - (b) It is desired to charge 15 Kg of ethane at 300 K into a cylinder of volume 0.08 07 m^3 . Determine the pressure to which the cylinder is to be charged. Further if 20 Kg of ethane is charged into a cylinder of capacity of 0.15 m³ and the cylinder is held at a pressure of 15 MPa, determine the temperature of the gas in the cylinder. Assume that ethane behaves like an ideal gas.

OR

- Two reversible heat engines A and B are arranged in series. Engine A rejects (b) 07 heat directly to engine B. A receives 200 kJ at a temperature of 421°C from hot source while engine B is in communication with a cold sink at a temperature of 50° C. If the work output of A is twice that of B, find(a) intermediate temperature between A and B,(b) efficiency of each engine and(c) heat rejected to the sink.
- Q.3 (a) Using Gibbs relations derive Maxwell relations.
 - The composite wall of an oven consists of three materials, two of which are of (b) known thermal conductivity, $k_A = 20$ W/mK and kc = 50 W/mK and known thickness, $L_A = 0.3$ m and Lc = 0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, $L_B = 0.15$ m, but unknown thermal conductivity k_B . Under steady state conditions, measurements reveal an outer surface temperature of 20°C, an inner surface temperature of 600°C, and oven air temperature of 800°C. The inside convection coefficient h is known to be 25 W/m²K. What is the value of $k_{\rm B}$?

OR

- Q.3 (a) Write a short note on stoichiometry.
 - A refrigerant suction line having outer diameter 30 mm is required to be 07 (b) thermally insulated. The outside air film coefficient of heat transfer is 12 W/m^2 ⁰C. The thermal conductivity of insulation is 0.3 W/m^0 C. (a) Determine whether the insulation will be effective or not; (b) Estimate the maximum value of thermal conductivity of insulating material to reduce heat transfer;(c) Determine the thickness of cork insulation to reduce the heat transfer to 22 percent if the thermal conductivity of cork is $0.038 \text{ W/m}^{\circ}\text{C}$.
- Q.4 (a) Give a brief note on (i) Film condensation (ii) Drop-wise condensation
 - Water is boiled at atmospheric pressure by horizontal polished copper heating 07 (b) element of diameter 5 mm having emissivity 0.05 immersed in water. If the
 - 1

07

07

07

surface temp. of heating wire is 350° C, determine rate of heat transfer from wire to water per unit length of wire and heat transfer co-efficient.

OR

- Q.4 (a) Derive the expression of effectiveness by NTU method for parallel flow heat 07 exchanger.
- Q.4 (b) A vertical plate 340mm high and 400mm wide, at 40^oC is exposed to 07 saturated steam at 1atm. Calculate: (i) film thickness at bottom of the plate (ii) the maximum velocity at the bottom of the plate (iii) the total flux to the plate.
- Q.5 (a) Write a short note on Gas radiation.

07

(b) The tubes (k = 106 W/m⁰C) of a single pass condenser are of 30mm outside 07 diameter and 25mm inside diameter. The condenser is required to handle 20000 kg/hr of dry saturated steam at 50^oC. The inlet and outlet temp. of water are 15^o and 25^oC resp. If the avg. velocity of water in each tube is 2.5m/s and steam side heat transfer co-efficient is 5150 W/m² ^oC, calculate outside tube area. Use Nu= 0.023 Re^{0.8} Pr^{0.3}.

OR

- Q.5 (a) Derive the expression for the radiant heat exchange between the two non- 07 black infinite long parallel plates.
 - (b) A thermocouple indicates a temp. of 850° C when placed in a pipe line where 07 a hot gas is flowing at 920° C. If the convective heat transfer co-efficient between the thermocouple and gas is 57 W/m² °C, find the duct wall temp. Take $\epsilon = 0.5$.
