	Seat	No.: Enrolment No	
		GUJARAT TECHNOLOGICAL UNIVERSITY M. E SEMESTER – I • EXAMINATION – WINTER • 2014	
	Subj Tim	ject code: 714101N Date: 01-12-2014 ject Name: Mathematical Methods in Signal Processing e: 10:30 am - 01:00 pm Total Marks: 70 ructions: 1. Attempt all Questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.	
Q. 1)			
	a)	Let $f: X \to R$ be an arbitrary function defined on a set X. Show that $d(x, y) = f(x) - f(y) $ is a Pseudometric.	[7]
	b)	i) Explain why the set of real numbers is both open and closed.	[7]
		ii) Show that the boundary of a set S is a closed set.	
Q. 2)	a)	Explain about stochastic AR and MA models.	[7]
	b)	Explain about binary hypothesis testing.	[7]
		OR	
	b)	Let (X,d) be a metric space show that $d_m(x, y) = \min(1, d(x, y))$ is a metric on X.	[7]
Q. 3)	a)	What is the significance of HMM model?	[7]
	b)	Obtain Z- transform of unit step and unit impulse.	[7]
		OR	
Q. 3)	a)	A Grammian matrix R is always positive semi define. It is positive define if and only if the vectors $p_1, p_2, p_3,, p_m$, are linearly independent.	[7]
	b)	i) A linear operator $A: X \rightarrow Y$ is bounded if and only if it is continuousö. Justify the statement.	[7]
		ii) Compute transpose, inverse and rank of the matrix A , $A = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & \frac{-2}{5} \\ \frac{1}{5} & \frac{1}{5} & \frac{1}{10} \\ \frac{1}{5} & \frac{-4}{5} & \frac{1}{10} \end{bmatrix}$	

Explain Modulation Theorem and Parsevaløs Theorem. [7] Q. 4) a)

Explain sampling process with suitable example. Discuss about axtialiasing filter. [7] b)

Q. 4)	a)	Show that if A has both a left inverse and a right inverse, they must be same.	[7]
	b)	Find eigen values and corresponding eigen vector of the matrix A	[7]
		$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$	
Q. 5)	a)	Explain any two properties of z- transform.	[7]
	b)	Explain Linearity and scaling property of Fourier Transform.	[7]
Q. 5)	a)	OR	[7]
		Let $A: H \to H$ be a bounded linear operator on a Hilbertspace H. Show that:	
		i) The adjoint operator A^* is linear.	
		ii) The adjoint operator A^* is bounded	
		iii) $ A = A^* .$	

b)

Verify Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$ and find A^{-1}

[7]
