Enrolment No.

Date: 02-12-2014

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY M. E. - SEMESTER – I • EXAMINATION – WINTER • 2014

Subject code: 714704N

Subject Name: Optimization Theory and Practice

Time: 10:30 am - 01:00 pm

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q:1 10 grams of Alloy A contains 2 grams of copper, 1 gram of zinc and 1 gram of lead. 10 14 grams of Alloy B contains 1 gram of copper, 1 gram of zinc and 1 gram of lead. It is required to produce a mixture of these alloys, which contains at least 10 grams of copper, 8 grams of zinc, and 12 grams of lead. Alloy B costs 1.5 times as much per Kg as alloy A. Find the amounts of alloys *A* and *B*, which must be mixed in order to satisfy these conditions in the cheapest way. Use simplex method.

Q:2	(a)	Explain the various steps of Random Jumping Method used to optimize	07
		nonlinear unconstrained problem. Also mention the advantages and	
		disadvantages of Random search methods.	
	(b)	Draw the flow chart for Simulated annealing algorithm.	07
	. /	ŬR Ŭ	

(b) What are the basic operations used in Genetic algorithm? What is the fitness function in 07 Genetic algorithm?

Q:3 (a) Minimize
$$f(x_1, x_2) = x_1 - x_2 + 2x_1^2 + 2x_1x_2 + x_2^2$$
 from the starting point
 $X_1 = \begin{cases} 0 \\ 0 \end{cases}$ using univariate method.

(b) Draw the flow chart for Powelløs method of unconstrained optimization. 07

OR

- Q:3 Explain the interior penalty and exterior penalty optimization techniques for single 14 variable function $f(X) = \alpha x_1$, subjected to $g_1(X) = \beta x_1$.
- Q:4 (a) Find the extreme points of the function Minimize $f(x_1, x_2) = x_1^3 + x_2^3 + 2x_1^2 + 4x_2^2 + 6$
 - (b) Find the dimensions of a box of largest volume that can be inscribed in a sphere of unit 07 radius.

OR

- Q:4 (a) A beam of uniform rectangular cross section is to be cut from a log having a circular 07 cross-section of diameter 2a. The beam has to be used as a cantilever beam to carry a concentrated load at a free end. Find the dimensions of the beam correspond to the maximum bending stress capacity. (Bending stress $\sigma = MY/I$, M = Bending moment, Y = Distance of extreme fibre, I = Moment of inertia)
 - (b) Find the maximum of the function

07

07

 $f(x_1, x_2) = 2x_1 + x_2 + 10$ subject to $g(x_1, x_2) = x_1 + 2x_2^2 - 3$

Using Lagrange multiplier method.

- Q:5 (a) Find the minimum of f = x(x-1.5) in the interval (0.0, 1.0) to within 10% of the exact 07 value using Dichotomous search method.
 - (b) Minimize $f(\lambda) = 0.65 \frac{0.75}{1 + \lambda^2} 0.65\lambda \tan^{-1} \frac{1}{\lambda}$ using quasi Newton method with starting point $\lambda = 0.1$ and step size $\Delta \lambda = 0.01$ in central difference formula. Use $\varepsilon = 0.01$ for checking convergence.
- Q:5 (a) Minimize $f(x) = 0.65 \frac{0.75}{1 + x^2} 0.65x \tan^{-1} \frac{1}{x}$ in the interval [0,3] by Fibonacci 07 method using n = 6.
 - (b) Explain the secant method of one dimensional nonlinear optimization. 07
