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Instructions:
1. Attempt all questions.
2. Make suitable assumptions wherever necessary.
3. Figures to the right indicate full marks.
Q.1 (a) Define Gamma function. Prove that I n+1=n I, nis + ve 02
integer.
(b) ™ z 03
: . v ¢ deé
Define Beta function. Prove that I A/sin 8d HXJ =7
0 0 Vsin@
(c) s _xm_l 03
Prove that B(m,n) = I—+ X
o +x)"™"
(d)  Find the Fourier cosine transform of f(x) = e 03
(e) V.2 03
. —0<x<7x
Express the function f(x) = < 2
O,x>rm
As  Fourier sine  integral and  show  that
J'l_cﬂsinazxdwzz,o <X<T.
0 w 2
Q.2 (a) Evaluate: (i) L(cos’ 2r) (ii) L( #* sin 2¢) 04
(b) State and prove I*shifting property of Laplace 03
transformation.
(c) Attempt following:
@) (s> 1) +2 04
Evaluate: (a) L™'| ~——2 b) L™ S—j
@) ( s ®) (s2—4s+13
(ii) State convolution theorem. Using it evaluate 03
1
I
[(s + a)(s + b)j
OR
(c) Attempt following:
(@ 04
Evaluate: (a) L™ (ZSLJ (b) L| cot™ (ij
sT+2s+2 a
(ii) Using Laplace transformation solve the differential 03
equation: y"—y =t¢, y(0) = y'(0) =1.
Q.3 (a) To solve following differential equation: 05

(i) (D> +2D+1)y =cos’ x
(i) (D* —6D +13)y =8¢ sin4x
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(b)
(c)

(a)

(b)
(c)

Using method of variation of parameter to solve the
3x

differential equation: y" —6y"+9y = ¢ -
x

Solve the differential equation:
x° d_zy - x@ +y=logx
dx’ dx Y 8t
OR

To solve the following differential equation:
. d’y
1 —
@) 1o
.. d’y _dy
i) —-—-2—
i dx’ dx

Using method of variation of parameters to solve the
2

d”y

2
X

4y=(+e")*+3.

+y = x?e™.

differential equation:

+ y =cosecx

Solve the differential equation:
» d 2)7 ﬂ

y? dx
Obtain Fourier series for f(x) = x (27 -x) in interval
O<x<2x.

(1+x) + (14 x)==+ y = 2sin[log(1 + x)].

x,0< x<1.

Obtain Fourier series for f(x) =
72-x),1<x<2

x,0<x<

NN

Obtain half-range sine series for f(x) =
T
T—x,—<x<7x
2

OR
Obtain Fourier series for f(x) =x + x’in—7Z < x < 7.
) 1 7[2
Hence deduce that Z—z =—.
T n 6
Obtain Fourier series for f(x) x —x* -1 < x <1.

Obtain Half — range cosine series for the function
f(x)=(x —1)? in0<x<1.Hencededuce

1 1 1 1 T’
that —+—+—+—-+...=—.
1 3> 5 7 8

Form the partial differential equation of
@) z= (> +a)x* +b) (i) z=x+y+ f(xy)
Solve the following partial differential equation
(1) xp+yq =z (i1) ptanx + qtany = tanz
Find Z-transform of (i) A" (i1) coshx
OR

05
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05

05

04

05

05

04

05

05
04

05

05

04



Q5 (a)

(b)

(c)

Solve following partial differential equation by direct 05
integral method.
2 2
@) £ — cosxcos y (ii)—f = z given that when y = 0,
0xdy ady

dz
z=e'and —=e".

Y

Solve the following partial differential equation: 05
(i) z=p*+q* (i) p’+q* =x+y.
State and prove linear property for Z-transform. 04
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