
 1

                                                                                                                                                                                                                                                          

Seat No.: _____                                                         Enrolment No.______ 

   

GUJARAT TECHNOLOGICAL  UNIVERSITY 

P.D.D.C Semester – II (Civil/Mech/Elect/E.c) 

Subject Name: MATHEMATICS - II 

Subject code:X20001                                                                       Total Marks: 70 

Date:                                                                                              Time:3 Hours    

Instructions: 
1. Attempt all questions.  

2. Make suitable assumptions wherever necessary. 

3. Figures to the right indicate full marks. 

 

Q.1  (a) Define Gamma function. Prove that nn =+Γ 1 !, n is + ve 

integer. 
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 (b) 

Define Beta function. Prove that π
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Prove that dx
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 (d) Find the Fourier cosine transform of f(x) = 
2x

e
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 (e) 

Express the function f(x) = 
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Q.2  (a) Evaluate: (i) L( )2cos2 t                        (ii) L( )2sin2 tt  04 

  (b) State and prove stI shifting property of Laplace 

transformation. 
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 (c) Attempt following:  

  (i) 
Evaluate: (a) 
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 (ii) State convolution theorem. Using it evaluate 
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  OR  

  (c) Attempt following:  

 (i) 
Evaluate: (a) 
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 (ii) Using Laplace transformation solve the differential 

equation: .1)0()0(, =′==−′′ yytyy  
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Q.3  (a) To solve following differential equation: 

(i) xyDD 22 cos)12( =++     

(ii) xeyDD x 4sin8)136( 32 =+−   
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 (b) Using method of variation of  parameter  to solve the 

 differential equation: .96
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 (c)  Solve the differential equation: 
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Q.3  (a) To solve the following differential equation: 
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 (b) Using method of variation of parameters to solve the 

differential equation: ecxy
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 (c) Solve the differential equation: 
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Q.4  (a) Obtain Fourier series for f(x) = x (2π -x) in interval 

π20 << x . 
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  (b) 
Obtain Fourier series for f(x) = 
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 (c) 

Obtain half-range sine series for f(x) = 
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  OR  

Q.4  (a) Obtain Fourier series for f(x) = x + 2
x in ππ <<− x . 

Hence deduce that
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  (b) Obtain Fourier series for f(x) x – x 2 ,-1 < x <1. 05 

 (c) Obtain Half – range cosine series for the function  

f(x)= ( )2
1−x in0<x<1.Hencededuce 
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Q.5  (a) Form the partial differential equation of  

(i) ( )( )bxaxz ++= 22             (ii) )(xyfyxz ++=  
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 (b) Solve the following partial differential equation  

(i) xp+yq = z             (ii) ptanx + qtany = tanz 
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 (c) Find Z-transform of (i) nλ            (ii) coshx 04 

  OR  
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Q.5  (a) Solve following partial differential equation by direct 

integral method. 
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 (b) Solve  the following partial differential equation: 

(i) 22 qpz += (ii) yxqp +=+ 22 . 
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 (c) State and prove linear property for Z-transform. 04 
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