Enrolment No.____

Total Marks: 70

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC- SEMESTER-III - EXAMINATION – SUMMER 2017 Subject Code: X31102 Date:29/05/2017

Subject Name: Engineering Electromagnetics

Time: 02:30 PM to 05:00 PM

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

	•	5. Figures to the right multate run marks.	
Q.1	(a)	Define the terms: scalar, vector & unit vector. Also explain spherical coordinate system with neat & clean diagram in brief.	07
	(b)	 Solve the followings: 1) Show that the vector fields A = ρcos(Ø)a_ρ + ρsin(Ø)a_Ø + ρa_z and B = ρcos(Ø)a_ρ + ρsin(Ø)a_Ø - ρa_z are everywhere perpendicular to each other. 2) Transform the given vector G = (xz/y) a_x into cylindrical coordinate components & variables. 	07
Q.2	(a)	Derive the expression for the electric field intensity due to an infinite sheet charge $\rho_s C/m^2$ in yz plane at any point on the x axis.	07
	(b)	Define electric field intensity. For given infinite uniform line charges of 5 nC/m lie along the positive and negative x and y axis in free space. Find E point $P(0,3,4)$.	07
		OR	
	(b)	Define the term volume charge density. Three infinite uniform sheets of charge are located in free space as follows: 3 nC/m^2 at $z = -4$, 6 nC/m^2 at $z = 1$ & -8 nC/m^2 at $z = 4$. Find E at the point P (2,5,-5) & Q(-1,-5,2).	07
Q.3	(a)	Explain the concept of potential gradient and derive the relationship between \mathbf{E} and \mathbf{V} .	07
	(b)	Define current density. Evaluate point form of the continuity equation. OR	07
Q.3	(a) (b)	Define the divergence of a vector field. And prove the divergence theorem. Define dipole and dipole moment. Determine the V and E for a dipole of moment $p=6 a_z$ nC.m located at the origin in free space at point $P(r=4,\Theta=20^\circ,\emptyset=0^\circ)$.	07 07
Q.4	(a)	Derive the Poisson's equations & Laplace's equations. Also explain uniqueness Semij infinite planes at $\emptyset = 0$ & $\emptyset = \pi/6$ are separated by an infinitesimal	07
	(b)	theorem infinite planes at $\emptyset = 0$ at $\emptyset = 0$ ($\psi = 100$ at $\emptyset = \pi/6$, calculate potential V & Determine the Electric field intensity at point P(3,1,2) for the field of two coaxial cylinders, V= 50 V at $\rho = 2$ m and V= 20 V at $\rho = 3$ m. OR	07
Q.4	(a)	Derive the boundary conditions for the perfect dielectric materials.	07
		State Bio-Savart law & derive the expression for the magnetic field intensity if Infinitely long wire carrying current I located on the z axis.	07
Q.5	(a)	State & prove poynting theorem relating to the flow of energy at a point in space in and electromagnetic field.	07
	(b)	Write a brief note on retarded potential.	07
		OR	
Q.5	(a)	State Maxwell's equations in point form and explain physical significance.	07

(a) State Maxwell's equations in point form and explain physical significance.
(b) Write a brief note on wave propagation in good conductor.
07
