Seat N	No.:	Enrolment No.	Enrolment No.	
	_	GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-II • EXAMINATION – SUMMER 2013		
Subj	ect (Code: X21102 Date: 10-06-201	Date: 10-06-2013	
_	e: 02	1 1	Total Marks: 70	
	2.	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.		
Q.1		Do as directed: 1. $(3FD)_{16}=()_8$ 2. $(225.225)_{10}=()_2$ 3. $(83)_9=()_5$ 4. $(614)_7=()_{10}$ 5. $(11010111.110)_2=()_{16}$ 6. Obtain the 9's complement of $(864)_{10}$. 7. Find dual of $x+1=1$.	07	
	(b)	 Add and multiply the (135.4)₆ and (43.2)₆ in the given base without converting to decimal. Given the two binary numbers X = 1010100 and Y = 1000011, perform the subtraction X-Y using 2's complements. Simplify the Boolean function F(x,y,z)=xy+xyz+xyz'+x'yz to a minimum number of literals by manipulation of Boolean algebra. 	03 02 02	
Q.2	(a) (b)	 Simplify the following Boolean function using Karnaugh map (in sum of products form): F(A,B,C,D)=A'B'D'+A'CD+A'BC and don't care conditions d=A'BC'D+ACD+AB'D' Implement a full-adder circuit with a decoder and two OR gates. Simplify the Boolean function F(w,x,y,z)=Σ(0,1,2,8,10,11,14,15) using tabulation method. OR Design a combinational circuit that accepts a three-bit number and generates an output binary number equal to the square of the input 	07 07 07	
Q.3	(a)	number. Write brief note on full-subtractor and construct it using only NAND gates.	07	

(b) Write brief note on "Binary parallel adder". Also describe 4-bit full adder with look-ahead carry in detail.

07

Q.3 (a) Answer the following questions: 1. Implement Boolean function $F(A,B,C,D)=\Sigma m(2,4,5,7,10,14)$ using 8:1 multiplexer.

OR

		2. Draw a combinational logic circuit, which can compare two 4-bit binary numbers.	
	(b)	Explain operation of an edge triggered D flip-flop.	07
Q.4	(a)	Design a counter with the following binary sequence: 0, 1, 3, 2, 6, 4, 5, 7 and repeat. Use RS flip-flops.	07
	(b)	What is meant by race-around condition in relation to the J-K flip-flops? Draw clocked Master-Slave J-K flip-flop configuration and explain it in brief.	07
		OR	
Q.4	(a)	Explain 4-bit bidirectional shift register with parallel load in detail.	07
	(b)	Explain 4-bit synchronous up-down binary counter in detail.	07
Q.5	(a)	Discuss arithmetic, logic and shift microoperations in brief.	07
	(b)	Write brief note on "Instruction codes"	07
		OR	
Q.5	(a)	What is scratchpad memory? Explain the working of a processor unit employing a scratchpad memory with diagram.	07
	(b)	Answer the following questions:	07
		1. What are the advantages & disadvantages of hard-wired control and microprogram control?	
		2. Write brief note on "Typical characteristics of IC logic families".	
