Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-III • EXAMINATION – SUMMER 2013

	•	Code: X30604 Date: 17-05-2013	
Tin	ie: 0	Name: Advanced Fluid Mechanics 2.30 pm - 05.00 pm Total Marks: 70	
Insti Q.1	1. 2. 3. (a) (b)	Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Explain hydrodynamically smooth and rough pipe. Explain "flow net". Write its uses and limitations.	07 07
Q.2	(a)	Obtain equation of continuity for three dimensional flows by Cartesian co- ordinates.	07
	(b)	The velocity in x. y and z directions are given by $u = 2x - yt$, $v = y - zt$ and $w = x - 3z + t$ respectively. Determine the acceleration and velocity at point $(1, 1, 2)$ and $t = 1$.	07
	<i>(</i> 1.)	OR	0.5
	(b)	Discuss the specific energy curve with a neat sketch.	07
Q.3	(a) (b)	Defines the term stream function. How it differs by potential function. In a two dimensional incompressible flow, the fluid velocity components are given by $U = x - 4y$ and $V = -y - 4x$. Show that velocity potential exists and determine its form. Find also the stream function. OR	07 07
Q.3	(a) (b)	Obtain equation of continuity for the fluid flow in polar co- ordinate. In a two dimensional flow of compressible fluid, the tangential component of velocity $V\alpha = \frac{Cstrac}{r^2}$, where C is constant. Using equation of continuity, determine the expression for radial velocity V. Also find the magnitude and direction of resultant velocity.	07 07
Q.4	(a)	Explain Hardy cross method.	07
	(b)	Describe various types of hydraulic models. OR	07
Q.4	(a) (b)	Describe Rayleigh method for dimensional analysis. Explain and prove Buckingham's π – theorem.	07 07
Q.5	(a)	Explain the concept of boundary layer. Derive the expression for displacement thickness.	07
	(b)	Describe Reynold's experiment and discuss the laminar and turbulent flow in pipe.	07
Q.5	(a)	OR Explain formation of boundary layer with neat sketch and also explain separation of boundary layer.	07
	(b)	Explain Prandtle's mixing length theory.	07
