GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-III • EXAMINATION – SUMMER 2013

I DDC - SEMIESTER-III · EXAMINATION - SUMMER 2015							
Subject Code: X 31901Date: 09-05Subject Name: Fluid Mechanics							
	Time: 02.30 pm - 05.00 pm Total Mark						
Instru							
		Attempt all questions.					
	2. Make suitable assumptions wherever necessary.						
	3.	Figures to the right indicate full marks.					
Q.1	(a)	State Pascal's law and prove it.	07				
C	(b)		07				
Q.2	(a)	•	07				
		(i) Manometer (ii) Specific Gravity					
		(iii) Specific Volume (iv) Density					
		(v) Metacentre (vi) Buoyancy					
		(vii) Viscosity	07				
	(b)	Classify Manometers. Explain U – tube manometer with neat sketch. \mathbf{OR}					
	(b)						
		for dimensional analysis.					
Q.3	(a)	Derive Continuity Equation in 3 – dimension rectangular co-ordinate					
		system.					
	(b)	A 30 cm diameter pipe, conveying water, branches into two pipes of 0 7					
		diameters 20 cm and 15 cm respectively. If the average velocity in					
		30 cm diameter pipe is 2.5 m/s, determine discharge in this pipe. Also					
		find velocity in 15 cm diameter pipe if the average velocity in 20 cm diameter pipe is 2 m/s.					
		OR					
Q.3	(a)		07				
X.C	()	rectangular plate with 2 m wide and 3 m deep which is placed					
		vertically in water in such a way that upper edge is horizontal and					
		2.5 m below the water surface.					
	(b)	Discuss the conditions of equilibrium of floating and submerged 07					
		bodies					
Q.4	(a)	Velocity components of a fluid flow are given as	07				
		u = (6xy2 + t), v = (3yz + t2 + 5), w = (z + 3 ty), where x, y, z are					
		given in meters and time t in seconds. Determine velocity vector at $P(4, 1, 2)$					
		point P $(4, 1, 2)$ at time t = 4 seconds. Also determine the magnitude of					
		velocity and acceleration of the flow for given location and time.					
	(b)	The right limb of a simple U – tube manometer containing mercury is	07				
	(0)	open to the atmosphere while the left limb is connected to a pipe in	07				
		which a fluid of specific gravity 0.9 is flowing. The centre of pipe is					
		<i>12</i> cm below the level of mercury in the right limb. Find the pressure					
		of fluid in the pipe if the difference of mercury level in two limbs is					
		20 cm.					

	N	n
		к
•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

Q.4	(a)	Derive expression for discharge through horizontal venturimeter.	07
	(b)	State and prove Bernoulli's equation.	07
Q.5	(a)	Distinguish between (i) Steady and unsteady flow	
		(ii) Uniform and non uniform flow	
		(iii) Compressible and incompressible flow	
	(b)	The efficiency of fan η depends upon diameter of rotor D, discharge	07
		of fluid Q, density of fluid ρ , dynamic viscosity of fluid μ and angular	
		velocity of rotor ω . Find expression for η in terms of dimensionless	
		parameters.	
		OR	
Q.5	(a)	Derive an expression for the velocity distribution for viscous flow	07
-		through a circular pipe.	
	(\mathbf{L})	Device the Hanner Devices like exception. State the commution much	07

(b) Derive the Hagen-Poiseullie equation. State the assumption made. 07
