GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-IV • EXAMINATION – SUMMER • 2014

Subject Code: X40903	Date: 21-06-2014
Subject Name: Power System Analysis and Simulation Time: 10:30 am - 01:00 pm Instructions:	Total Marks: 70
 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. Symbols have their usual meanings 5. 	
 Q.1 (a) State the advantages of per unit system (b) With the help of vector diagram explain the effect of varyi Generator delivering constant power to infinite bus bar (c) Prove that 1+α +α² = 0 	(5) (6) (3)
 Q.2 (a) Draw and explain the waveform of short circuit armature of in synchronous machine on no load. Also explain why X_d? (b) Draw the p.u. impedance diagram for the power system sh Neglect resistance and use a base of 100 MVA, 220 kV in ratings of generator, transformer and motor are: 	$X_{d} < X_{d} < X_{d}$ own in fig. (7)
Generator: 40 MVA, 25 kVA, $X'' = 20\%$ Motor: 50 MVA, 11 kV, $X'' = 30\%$ Y-Y transformer T1: 40 MVA, 33/220 kV, = 15% Y- Δ transformer T2: 30 MVA, 11 Δ /220 kV Y, X = 15% OR (b) Write a short note on selection of circuit breakers	(7)
Q.3(a) Derive the formula for sequence impedance of transmissio(b) Draw zero sequence reactance diagrams for different types connections	n lines (7)
 OR Q.3 (a) Using appropriate interconnection of sequence networks defor line to ground fault with impedance Z^f (b) Determine the voltages to neutral Van, Vbn, Vcn in a circu Van₁ = 50, Van₂ = j10, Van₀ = -10 	• • • • •
 Q.4 (a) A 3-phase synchronous generator rated 25 MVA, 11 kV has negative and zero sequence reactance of 1.0, 0.8 and 0.4 of For a double line to ground fault, find the fault current in total ground fault current 	hms respectively.
(b) Why neutral grounding is required? State different method	ls of neutral earthing (7)

(b) Why neutral grounding is required? State different methods of neutral earthing (7) and explain resonant earthing

Q.4

- (a) Which transmission line can be categorized as medium transmission line? (7)Derive the value of ABCD constants for nominal-T representation
- (b) Using the nominal ∏ method find the sending end voltage and voltage (7) regulation of a 250 km, three phase, 50 Hz, transmission line delivering 25 MVA at 0.8 pf lagging to a balanced load at 132 kV. Assume line inductance to be 1.24 mH/km line capacitance to be 0.0094 µF/km and line resistance to be 0.11 Ω/km

Q.5

- (a) Discuss factors affecting corona? State the Peek's formula for finding (7) corona loss.
- (b) Derive the expression for sending end voltage and current for a long line (7)

OR

Q.5

- (a) Derive the expression for refracted and reflected voltage for a line terminated (7) through inductance?
- (b) An overhead line with surge impedance of 500Ω bifurcate into two lines (7) of surge impedance 500Ω and 50Ω respectively. If a surge of 25 kV is incident on the overhead line, determine the magnitude of voltage and current which enter the bifurcated lines.
