Seat No.:	Enrolment No
	OGICAL UNIVERSITY AMINATION – SUMMER 2015

Subject Code: X40904	Date:04/06/20)15
Subject Name: Theory of Electromagnetics		
Time: 10.30am-01.00pm	Total Marks:	70
Instructions:		
 Attempt all questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 		
Q.1		
 (a) Explain dot product and cross product of vectors. Consider two vectors A x=0 plane. Explain how scalar and vector components of A in the direction obtained. 		(7)
(b) Given point P(-2,6,3) and vector A = ya _x + (x+z)a _y . Evaluate A at P in cart cylindrical co-ordinate systems Q.2	esian and	(7)
(a) Define electric field intensity. State the formula for electric field intensity charge and hence derive the formula for electric field intensity due to line		(7)
(b) Find magnitude and direction of electric field intensity at (6,8,-3) if uniform of 5× 10 ⁻⁹ lies along the (a) y-axis (b) the line x=9, y=4 OR	_	(7)
(b) Explain how a vector in cartesian system can be converted into cylindrical co-ordinate system.	or spherical	(7)
Q.3		
(a) What is electric flux and electric flux density? State the relationship betwe density and electric field intensity for free space?	en electric flux	(4)
(b) State the application of Gauss' law to differential volume element and hen- divergence theorem.	ce explain the	(10)
OR		
Q.3 (a) Three co-axial cylindrical sheets of charge are present in free space; $\rho_s = 5$ $\rho_s = -2$ C/m ² , at $r = 4$ m and $\rho_s = -3$ C/m ² at $r = 5$ m. Find the electric flux der (ii) $r = 3$ m (iii) $r = 4.5$ m and (iv) $r = 6$ m		(7)
(b) State and explain the expression for energy expended in moving a point ch field. Also define potential difference and absolute potential.	arge in an electric	(7)
Q.4		
(a) What is voltage gradient? Prove that electric field intensity is given by neg gradient.	ative of voltage	(7)
(b) Explain electric dipole		(7)
OR Q.4		
(a) What is current and current density? Also derive the point form of continuit(b) Write a short notes on boundary conditions for perfect dielectric materials	ity equation	(7) (7)

Q.5	
(a) Explain Poisson's and Lapalce's equation	(7)
(b) What is curl? Prove that curl $H = J$	(7)
OR	
Q.5	
(a) State and explain Lorentz force equation. Also prove that force on a current element	(7)
depends upon the angle between the vectors representing the direction of current flow	
and the direction of magnetic flux density	
(b) Discuss Maxwell's equations in integral form and point form	(7)
and the direction of magnetic flux density	(7)