Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER IV - • EXAMINATION - SUMMER 2015

Subject Code:X41902 Date:30/05/2015

Subject Name: Fluid Power Engineering

Time:10.30am-01.00pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Draw and explain Hydro-electric Power Plant with neat sketch.
 - (b) A three jet Pelton wheel generates 10000kw under head of 400m. The blade angle at outlet is 15^0 and the reduction of relative velocity while passing through blade is 5%. The overall efficiency of wheel is 80%. C_v =0.98 and speed ratio = 0.46 Find
 - 1. Total flow in m³/sec and
 - 2. The diameter of jet.
- Q.2 (a) State the main components of the Centrifugal pump and explain working with neat sketch.
 - (b) A centrifugal pump runs at 500rpm and discharges 8 m³/min against head of 10m. It has impeller of 50cm outer diameter and 25cm inner diameter. Vanes are set back at outlet angle of 45°. The constant velocity flow is 2 m/s. Calculate:
 - 1. The manometric efficiency
 - 2. Vane angle at inlet.

OR

- (b) What is Specific speed obtain the expression for the specific speed of hydraulic urbine.
- Q.3 (a) Classify the energy losses in the pipe. Explain the Chezy's formula.
 - (b) A water tank 4 km away from the college hostel. Water supplies 150 litres per student per day. The strength of student is 1000. The total water required is pumped to tank at night for 6 hours. Calculate the diameter of pipe when head loss is limited to 25m. Assume f=0.0018.

ΛR

- Q.3 (a) Give classification of Reciprocating pump. Draw neat sketch of single acting reciprocating pump.
 - **(b)** Write short note on Jet pump.

Q.4 (a) Derive formula for workdone/kg of air in single stage reciprocating compressor without clearance.

- (b) A single stage, single acting Reciprocating compressor has clearance volume is 5% of the swept volume. Air drawn at 0.95bar and 27°. The delivery pressure is 7 bar. The atmospheric conditions are 1.013bar and 17°. The index of compression or expansion is 1.3. Find
 - 1. Indicated power when 3.5m³/min of free air delivered.
 - 2. Volumetric efficiency and
 - 3. Volumetric efficiency to free air delivered.

OR

Q.4 (a) Give detail classification of rotary compressor and explain any one with line sketch 07

07

07

07

07

	(b)	Explain fully "Pre-whirl" in centrifugal compressor.	07
Q.5	(a)	Derive an expression for the force exerted by a jet of water on the fixed inclined plate moving in a direction of jet.	07
	(b)	A Jet of water of diameter of 7.5cm moving with a velocity of 30 m/s, strikes a curved fixed plate tangentially at one end at an angle of 30^{0} to the horizontal. The jet leaves plate at angle of 20^{0} to the horizontal. Find the force exerted by the jet on plate in the horizontal and vertical direction.	07
Q.5	(a)	OR With a suitable sketch explain the working principle of an axial flow compressor. Draw the stage velocity triangles.	07
	(b)	Derive an expression for the optimum value of the intercooler pressure in a two stage reciprocating air compressor for perfect inter cooling condition.	07
