Seat No.: _____

No.

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-VI • EXAMINATION – SUMMER • 2015

Subject code: X61102 Subject Name: VLSI Technology and Design Time:10:30 am - 01:00 pm

Date: 12/05/2015

07

07

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Discuss VLSI design flow in behavioural, structural and geometrical layout domain. 07
- (b) Discuss packaging concerns for VLSI chips.Give examples of common IC packages.
 (a) Explain the following operating regions of MOS system under external 07 bias:Accumulation,Depletion,Inversion
 - (b) Consider a MOS system with the following parameters: tox = 200 A°, φ_{GC} = -0.85 V,N_A =2 x 10¹⁵ cm⁻³, Qox= q x 2 x 10¹¹ C/cm² (i)Determine the threshold voltage V_{T0} under zero bias at room temperature (T = 300 K). Note that ε_{ox} = 3.97 ε₀ and ε_{si} = 11.7 ε₀.
 (ii)Determine the type (p-type or n-type) and amount of channel implant (N₁/cm²) required to change the threshold voltage to 0.8 V.

OR

(b) Consider a diffusion area which has the dimensions 10 μ m x 5 μ m, and the abrupt junction depth 07

is 0.5 μ m. Its n-type impurity doping level is $N_D = 1 \times 10^{20} \text{ cm}^{-3}$ and the surrounding p-type substrate doping level is $N_A = 1 \times 10^{16} \text{ cm}^{-3}$. Determine the capacitance when the diffusion area is biased at 5 V and the substrate is biased at 0 V. In this problem, assume that there is no channel-stop implant.

- **Q.3** (a) Discuss small and narrow channel effects in a MOS transistor.
 - (b) Design a resistive-load inverter with $R=1 k\Omega$, such that $V_{OL}=0.6 V$. The 07 enhancement-type nMOS driver transistor has the following parameters:

$$V_{DD} = 5.0 \text{ V}$$
, $V_{T0} = 1.0 \text{ V}$, $\gamma = 0.2 \text{ V}^{1/2}$, $\lambda = 0$, $\mu n \text{ Cox} = 22.0 \ \mu \text{A}/\text{V}^2$

(i)Determine the required aspect ratio, W / L. (ii)Determine V_{IL} and V_{IH} (iii)Determine noise margins NM_L and NM_{H} .

OR

- (a) Define the critical voltages V_{IL} , V_{IH} , V_{OL} and V_{OH} and noise margins for an inverter. 07 **Q.3** (b) Consider a CMOS inverter circuit with the following parameters: 07 $V_{\text{DD}}=3.3~V$, $V_{\text{To.}}$,n = 0.6 V, $V_{\text{To.}}$,p = --0.7 V,kn = 200 $\mu\text{A}/V^2$, kp = 80 $\mu\text{A}/V^2$ Calculate the noise margins of the circuit. (a) Prove that the average power dissipation in a CMOS inverter is directly proportional to the 07 **O.4** operating frequency. (b) Write a short note on CMOS transmission gates. 07 OR (a) Draw the circuit of CMOS SR latch based on NOR2 gates and explain. **O.4** 07 (b) Explain the basic Principles of Pass transistor circuits. 07
- Q.5 (a) What are the high performance dynamic CMOS circuits?Explain any one.

1

07

	(b)	Write a short note on Electrostatic Discharge protection circuits in VLSI chip.	07
		OR	
Q.5	(a)	Explain constant field and constant voltage scaling.	07
	(b)	Write a short note on FPGA and CPLD.	07
