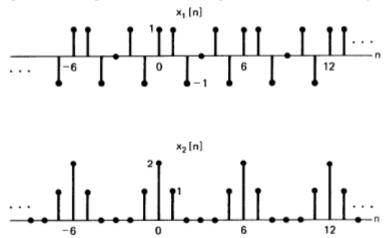
Seat No.:	
No	


Enrolment

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER - VI • EXAMINATION - SUMMER 2015

Subject Code: X61103		Date: 14/05/2015		
Ti	me:1 structi 1 2	t Name: Digital Signal Processing 10:30 am - 01:00 pm ons: . Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks.	Total Marks: 7	0
Q.1	(a)	(a) Define impulse response of LTI system. Explain how from the impulse response the frequency response of the LTI system can be determined.		
	(b)			07
		Sketch and label carefully each of the following signals: (1) $x(n + 3)$ (2) $x(n - 3)$ (3) $x(6 - n)$ (4) $x(3n + 1)$ (5) $x(n/2)$		
Q.2	(a)	A system has output $y(n) = x(n) \sin(n\pi/3)$ Check the system for linearity, causality, timevariance, Star Invertability.	tic, Stability and	07

07 (b) A system has input sequence $x(n) = \{1, 2, 3, 4\}$ and output sequence $y(n) = \{1, 2, 3, 4\}$ $\{1,4,8,11,9,1,-4\}$ then find out the system h(n) from input and output sequence by using linear convolution method.

- OR
- Consider the signal $x_1[n]$ and $x_2[n]$ depicted in following figure. These signals are **(b)** periodic with period 6. Compute and sketch their periodic convolution using No = 6.

07

07

Find out the impulse response of following block diagram if x[n] is input and y[n]**(b)** 07 is output sequence.

$$\mathbf{x[n]}$$

$$h_1[n] = x [n] - \frac{1}{2} x [n-1]$$

$$h_2[n] = (\frac{1}{2})^n u[n]$$

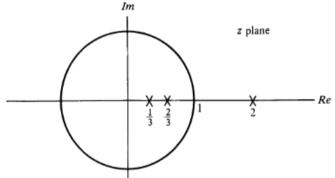
$$\mathbf{y[n]}$$

OR

The transfer function of discrete system is given following: Q.3 **(a)**

$$H(z) = \frac{1}{\left(1 - \frac{1}{3}Z^{-1}\right)(1 + 2Z^{-1})}$$

Find out the inverse z transform and Define the ROC for system stability and causality.


- Explain the sampling theorem and Find out Nyquiest rate for following signal: 07 **(b)** $X_1(t) = (Sin 200\pi t)/\pi t$ $X_2(t) = 5 \cos 1000\pi t \cos 4000\pi t$
- Q.4 Enlist the properties of Discrete time Fourier Transform. Also determine the (a) 07 frequency spectrum of signal $x(n) = a^n u(n)$.
 - Compare FIR and IIR filter. **(b)**

OR

State and Prove the properties of DFT: (1) Periodicity (2) Time shifting. **O.4** (a) 07 Draw the direct form I and Direct form II structure for difference equation **(b)** 07

$$y[n] - \frac{1}{2} y[n-1] + \frac{1}{4} y[n-2] = x[n] - x[n-1]$$

- (1) Find the 4 Point DFT of $x[n] = \{1, -2, 3, 2\}$ Q.5 **(a)** (2) Find the IDFT of $X(k) = \{1, 0, 1, 0\}$
 - Pole zero plot for the z- transform X(z) of x[n] is shown as following figure: **(b)** 07

Determine what can be inferred about the associated region of convergence from each of following statement

- (1) x[n] is right sided
- (2) The fourier transform of x[n] converges
- (3) The fourier transform of x[n] does not converges
- (4) x[n] is left sided.

OR

- Explain the Decimation in time FFT algorithm. 07 Q.5 **(a)** 07
 - Explain the Architecture of DSP processor **(b)**

07

07

07