Seat No.:	Enrolment No.
-----------	---------------

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - SEMESTER-VII • EXAMINATION - SUMMER • 2015

Subject code: X-70606 Subject Name: Advanced Structural Analysis			Date: 14/05/2015	
Tin	•	2:30 pm - 05:00 pm	Total Marks: 70	
mst	1. 2.	Attempt all questions. Make suitable assumptions wherever necessary Figures to the right indicate full marks.	•	
Q.1	Analyse the beam shown in Figure-1 and draw SFD, BMD. Use Stiffness Member Approach.			14
Q.2	(a) Explain use of Symmetry and Anti-symmetry in analysis of complex structures v suitable example.		llysis of complex structures with	07
	(b)	Derive $[SMS] = [R_T]^T [SM] [R_T]$ for a plane truss	member using usual notations.	07
	(b)	OR Explain any two different loading facilities in the pr	ofessional software.	07
Q.3	Analyse the plane truss shown in Figure-2 using stiffness member approach. Calculate Member end actions. All members have same axial rigidity. OR			14
Q.3				
Q.4	Analyse the Plane frame shown in Figure-4 using Stiffness Member Approach. OR			14
Q.4				14
Q.5	(a) (b)	Derive Stiffness Matrix for two noded bar element Write basic steps of F.E.M. and explain any one in OR	_	07 07
Q.5	(a) (b)	Derive Stiffness Matrix for two noded beam element Derive shape function for Constant Strain Triangle		07 07

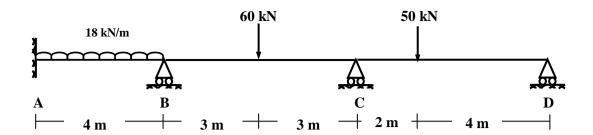
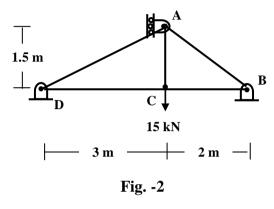
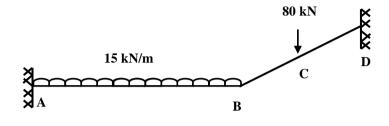




Fig. -1

Fig. -3

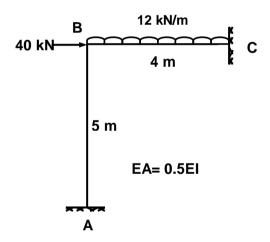
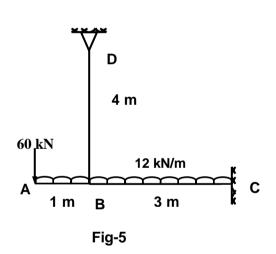



Fig. - 4

