Enrolment	No
-----------	----

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - Ist Semester-Examination - May/June- 2012

Subject code: X10001

Subject Name: Mathematics-I

Date:29/05/2012

Time: 10:30 am – 01:30 pm Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	(i) Solve $\frac{dy}{dx} = e^{3x-2y} + x^2 e^{-2y}$	03
		(ii) Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at	04
	(b)	the point (2, -1, 2) (i) If $\theta = t^n e^{-r^2/4t}$, what value of <i>n</i> will make $\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial \theta}{\partial r} \right) = \frac{\partial \theta}{\partial t}$?	04
		(ii) Trace the curve $y^2(2a-x) = x^3$	03
Q.2	(a)	(i)Using Gauss Jordan method, find the inverse of the matrix	03
		$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4 \end{bmatrix}$	
			0.4
		(ii) Find the Eigen values and Eigen vectors of the matrix $\begin{bmatrix} 1 & 1 & 3 \end{bmatrix}$	04
		$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$	
	(b)	Solve the following differential equations:	
		(i) $\left(1 + e^{\frac{x}{y}}\right) dx + e^{\frac{x}{y}} \left(1 - \frac{x}{y}\right) dy = 0.$	04
		(ii) $(e^{y} + 1)\cos x dx + e^{y}\sin x dy = 0.$	03
		OR	
	(b)	Solve the following differential equations: (i) $(1 + y^2) dx = (\tan^{-1} y - x) dy$	04
			03
		(ii) $x \frac{dy}{dx} + y \log y = xy e^x$	00
Q.3		Attempt the following:	
	(a)	If $u = \log(x^3 + y^3 + z^3 - 3xyz)$, show that	05
		$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{-9}{\left(x + y + z\right)^2}$	
	(b)	If $u = \sin^{-1} \left[\frac{x + y}{\sqrt{x} + \sqrt{y}} \right]$, prove that	05
		$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{-\sin u \cos 2u}{4 \cos^{3} u}$	
	(c)	If $x = r \cos \theta$ and $y = r \sin \theta$; evaluate $\frac{\partial(x, y)}{\partial(r, \theta)}$ & $\frac{\partial(r, \theta)}{\partial(x, y)}$	04
		1	
		1	

OR

		OR	
Q.3		Attempt the following:	
	(a)	If $u = f(r)$, where $r^2 = x^2 + y^2$,	05
		prove that $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f''(r) + \frac{1}{r}f'(r).$	
	(b)	If $z = x f\left(\frac{y}{x}\right) + g\left(\frac{y}{x}\right);$	05
		show that $x^2 \frac{\partial^2 z}{\partial x^2} + 2xy \frac{\partial^2 z}{\partial x \partial y} + y^2 \frac{\partial^2 z}{\partial y^2} = 0$	
Q.4	(c)	Examine the function $f(x, y) = x^3 + y^3 - 3axy$ for maxima & minima. Attempt the following:	04
2	(a)	Evaluate $\iint_{R} y dx dy$ where R is the region bounded by the parabolas $y^2 = 4x$ and	05
		$x^2 = 4y.$	
	(b)	Change the order of integration & evaluate $\int_{0}^{a} \int_{y}^{a} \frac{x dx dy}{x^2 + y^2}$	05
	(c)	Using double integration ,find area lying between the parabola $y = 4x - x^2$ and the line $y = x$.	04
		OR	
Q.4		Attempt the following:	
C	(a)	Evaluate $\int_{-\infty}^{\infty} e^{-(x^2+y^2)} dx dy$ by changing to polar coordinates.	05
		0 0	
	(b)	$\int dx dy dz$	05
		Evaluate $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{0}^{\sqrt{1-x^{2}-y^{2}}} \frac{dx dy dz}{\sqrt{(1-x^{2}-y^{2}-z^{2})}}$	
	(c)		04
Q.5		Attempt the following:	
•	(a)		05
		time. Find the components of its velocity and acceleration at $t = 1$ in the direction $i + j + 3k$.	
	(b)	Find div \vec{F} and curl \vec{F} where $\vec{F} = grad(x^3 + y^3 + z^3 - 3xyz)$ at the point	05
		(1, 2, 3)	
	(c)	y 1 1	04
		temperature of the body and that of the surrounding air. If body in air at $25^{\circ} C$ will cool from 100° to 75° in one minute, find its temperature at the end of	
		three minutes.	
		OR	
Q.5		Attempt the following:	
-	(a)	Find the directional derivative of the scalar function $f(x, y, z) = x^2 + xy + z^2$ at	05
		the point $A(1, -1, -1)$ in the direction of the line AB where B has coordinates (3, 2, 1)	
	(b)	Use Green's theorem to evaluate $\int (x^2 + xy) dx + (x^2 + y^2) dy$ where C is the	05
	square formed by the lines $y = \pm 1$, $x = \pm 1$.		
	(a)		04

(c) Find the orthogonal trajectories of the family of curves $x^2 - y^2 = c$. 04
