Seat No.:	Enrolment No

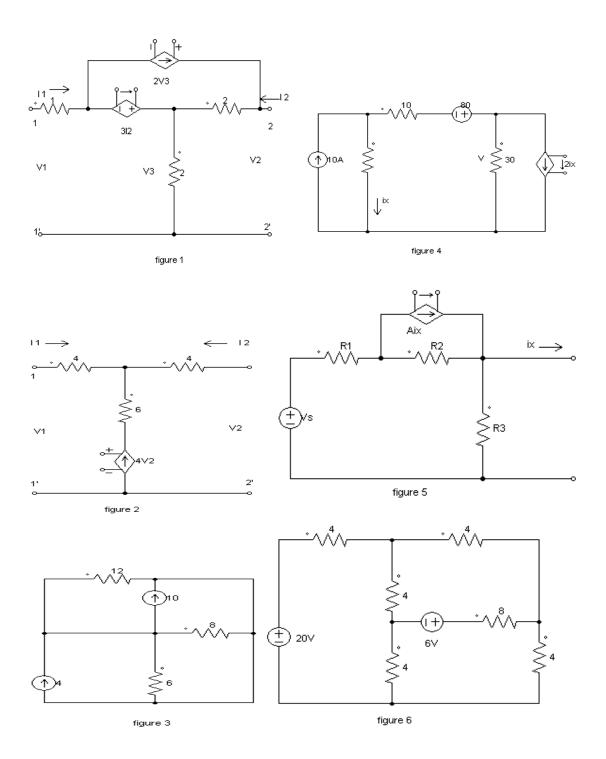
GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC SEM-II Examination May 2012

Subject code: X20901 Subject Name: Circuit & Networks

Date: 23/05/2012 Time: 10.30 am – 01.00 pm

Total Marks: 70


T 4	4 •	
Instru	ICT 10	nc
mon a	LUU	115.

1.	Attempt all	questions.
1.	Attempt an	questions

- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.

Q.1	(a)	Define the following terms, (I) Link (II) Graph (III) Tree (IV) Node (V) Branch (VI) Super	07
		mesh (VII) Super node	
	(b)	State and explain Maximum Power Transform Theorem when	07
	(~)	load is complex with variable resistance and fixed reactance.	0.
Q.2	(a)	Derive the expression for Y-Parameters for the Parallel	07
	(L)	connection of 2-Two port Networks.	07
	(b)	Find the Z parameter of figure 1.	07
	(b)	OR Find the V peremeter of feature 2	07
	(b)	Find the Y parameter of figure 2.	07
Q.3	(a)	Explain the rules for source transformation technique.	07
Ų.S	(b)	Find the current through 12 Ω resistor in the network of figure 3	07
	(0)	using node analysis.	07
		OR	
Q.3	(a)	State and Explain Thevenin's Theorem with suitable example.	07
Ų.S	(b)	Find the voltage V suing Superposition theorem of figure 4.	07
	(0)	This the voltage v sunig superposition theorem of figure 4.	07
Q.4	(a)	Explain the concept of the complex frequency.	07
~··	(b)		
	(0)	OR	07
Q.4	(a)	Draw the symbols of : Variac, Inductor, CCVS, VCCS, CCS,	07
	()	VCVS, variable capacitor.	
	(b)	Explain in brief the concept of initial conditions.	07
	()	r	
Q.5	(a)	Prove AB-BC=1.	07
•	(b)	Determine the current through 4 Ω resistor branch of network	07
	` /	given in figure 6 using mesh analysis.	
		OR	
Q.5	(a)	Classify various sources: CCVS, VCCS, CCCS, VCVS and	07
		explain in detail.	
	(b)	Explain the cascade connection of two nort networks	07
