GUJARAT TECHNOLOGICAL UNIVERSITY PDDC- SEMESTER I- • EXAMINATION -WINTER- 2016

Subject Code: X10001 Date:10/ Subject Name: Mathematics-I)1/2017	
Ti	Time: 10:30 AM to 1:30 PM Total Marks: Instructions:)	
 Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks. 				
Q.1	(a)	For which value of k, the system of equations $2x + 2y + 5z = 1, 3x + 2y + 5z = 2k, 3x + 4y + 10z = k^{2}$ Have solution? Find the solution in each case.	07	
	(b)	Find the minimum value of $x^2 + y^2 + z^2$ given that $xyz = 8$.	07	
Q.2	(a)	Solve $x \cos\left(\frac{x}{y}\right) \{ ydx + xdy \} = y \sin\left(\frac{y}{x}\right) \{ xdy - ydx \}.$	07	
	(b)	Trace the curve $x^3 + y^3 = 3ax, a > 0$.	07	
Q.3	(a)	Integrate $f(x, y) = x^2 + y^2$ over the triangular region with vertices $(0,0), (1,0), (0,1)$.	07	
	(b)	Evaluate $\iint [(x^2 - \cosh y)dx + (y + \sin x)dy]$ by Green's theorem, where C is	07	
		the rectangle with vertices $(0,0), (\pi,0), (\pi,1), (0,1)$.		
Q.4	(a)	Find the orthogonal trajectories of the family of the circle $x^2 + y^2 = 2ax$ in the polar form.	07	
	(b)	Find the rank of Matrix $A = \begin{bmatrix} 1 & 2 & 3 & -1 \\ -2 & -1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix}$ by row operation method and	07	
		determinant method both.		
Q.5	(a)	If $e^{u} = (x^{3} + y^{3} + z^{3} - 3xyz)$, prove that $\frac{1}{9} \left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right)^{2} = \frac{-1}{(x + y + z)^{2}}$.	07	
	(b)	(1) Solve: $(x^2 - 4xy - 2y^2)dx + (y^2 - 4xy - 2x^2)dy = 0.$	07	
		(2) Solve: $\frac{dy}{dx} - y \cot x = 2x \sin x$		
Q.6	(a)	Trace the curve : $r^2 = a^2 \cos 2\theta$, $a > 0$.	07	
	(b)	Sketch the region of integration and evaluate by reversing the order of $\frac{3}{2}$	07	
		integration for $\int_{0}^{\frac{3}{2}} \int_{3}^{6-2x} x dy dx$.		

Q.7 (a) Show that $\overline{F} = (y^2 - z^2 + 3yz - 2x)\hat{i} + (3xz + 2xy)\hat{j} + (3xy - 2xz + 2z)\hat{k}$ is both 07 solenoidal and irrotation.

(b) Find the Matrix A if $A^{-1} = \begin{bmatrix} -1 & -3 & -3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$ by Gauss- Jordan Method. 07
