GUJARAT TECHNOLOGICAL UNIVERSITY PDDC- SEMESTER II- • EXAMINATION -WINTER- 2016

Subject Name: Mathematics-II			/12/2016	
	ruction 1. 2.	2:30 PM to 5:30 PM Total Marks is: Attempt any five questions. Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	: 70	
Q.1	(a)	Define Beta and Gamma function also evaluate $\int_{-\infty}^{\infty} \frac{x^4 (1+x^5)}{(1+x)^{15}} dx$	07	
Q.1		0 (, , , , ,		
	(b)	(1) Prove that $B(m,n) = B(n,m)$.	03	
		(2) Evaluate $\int_{0}^{1} \frac{dx}{\sqrt{1-x^4}}$.	04	
Q.2	(a)	State Convolution theorem, find $L^{-1}\left[\frac{1}{S(S^2+4)}\right]$	07	
	(b)	(1) Using partial fraction method find inverse Laplace Transform of $\frac{(3S^2 + 2)}{(S+1)(S+2)(S+3)}$	04	
		(2) State and prove First Shifting theorem for Laplace Transform.	03	
Q.3	(a)	Find the Fourier Series to represent $f(x) = x^2$, $-\pi < x < \pi$.	07	
		Also deduce $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12}$		
	(b)	Express e^{ax} as a cosine series in $0 < x < \pi$.	07	
Q.4	(a)	Find Fourier Integral of f(x) = 1 $-1 < x < 1= 0$ Otherwise	07	
		Hence evaluate $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$.		
	(b)	Find the Fourier Series to represent $f(x) = -\pi$, $-\pi < x < 0$	07	
		$= x , 0 < x < \pi^{2}$ Also deduce $\frac{\pi^{2}}{8} = \frac{1}{1^{2}} + \frac{1}{3^{2}} + \frac{1}{5^{2}} + \dots$		

Q.5 (a)
(1) Solve
$$x \frac{dy}{dx} + y + 1 = 0$$
.
(2) Solve initial value problem
 $y'' + y' - 2y = 0$, $y(0) = 4$, $y'(0) = -5$.
03
04

(b) Find the general solution of $y"+9y = \sec 3x$ by method of variation 07 parameters.

Q.6 (a)Using Laplace Transform, solve the initial value problem07
$$y'''+2y''-y'-2y=0, y(0)=1, y'(0)=2, y''(0)=2 \text{ at } t=0$$
07(b)Find the solution of differential equation $\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = 3e^{-2x}$ by the method of Undetermined Co-efficient.07Q.7 (a)State Convolution theorem, find z-transformation of07

$$f_1(k) = \{2, 3, 4\}, f_2(k) = \{-1, 2, 3\}$$

(b) Solve by method of separation of variables, $u_{xx} = 16u_y$ 07
