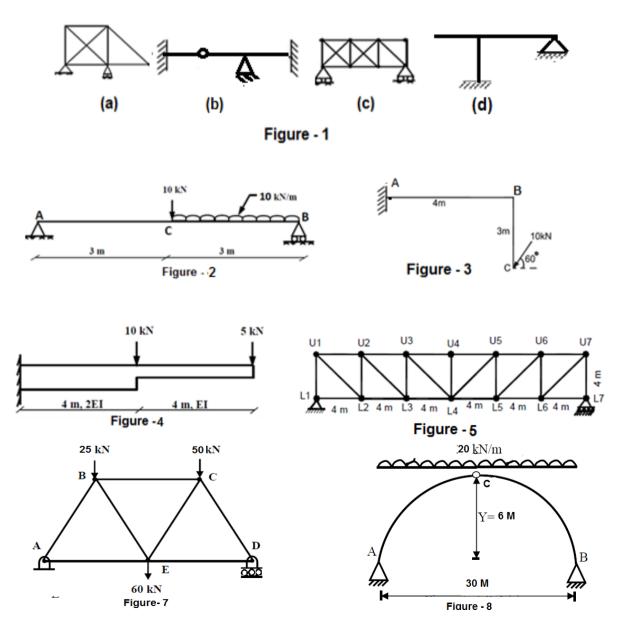
GUJARAT TECHNOLOGICAL UNIVERSITY PDDC- SEMESTER II- • EXAMINATION -WINTER- 2016

	•	Code: X20603 Date:04/01/2017 Name: Structural Analysis-I	,
Tir	ne:02 cructio 1. 2.	2:30 PM to 5:00 PM Total Marks: 70 ns: Attempt all questions. Make suitable assumptions wherever necessary.	
0.1	3.		07
Q.1	(a)	Define Static Indeterminacy and Calculate S.I. and K.I. for structures shown in figure-1.	07
	(b)	Define the following terms:1] Kinematic indeterminacy3] Proof resilience4] Strain energy5] Influence Line Diagram6] Core/Kernel of a Section7] Radius of Gyration	07
Q.2	(a)	Calculate slope at supports and deflection under 'C' for beam shown in figure-2 Use Macaulay's method. EI=2000 kNm ² .	07
	(b)	 State the theorems of moment area method. Draw the S.F and B.M diagram for the frame loaded as shown in the figure-3. 	07
	(b)	Derive fundamental relation between slope, deflection and radius of curvature.	07
Q.3	(a)	Using Macaulay's method, Calculate slope and deflection at free end for cantilever beam subjected to Point load 'W' at free end.	07
	(b)	Using Conjugate beam Method, Calculate slope and deflection under 10kN load for a cantilever beam shown in figure-4. Take $E=2 \times 10^5$ and $I = 50 \times 10^5$ mm ⁴ . OR	07
Q.3	(a)	A cylindrical shell 3.5 m long which is closed at the ends has an internal diameter of 1.2 m and wall thickness of 15 mm. Calculate the circumferential and longitudinal stresses induced if it is subjected to an internal pressure of 2 N/mm^2 . Take E=2x10 ⁵ MPa & μ =0.3.	07
	(b)	A 1.5 m long column has a circular cross-section of 5 cm diameter. One of the ends of the column is fixed in direction and position and other end is free. Calculate the safe load using : (a) Rankine's formula, the yield stress, $\sigma_c = 560$ N/mm ² and $\alpha = 1/1600$ for pinned ends. (b) Euler's formula. E _{C.I.} = 1.2 X 10 ⁵ N/mm ² .	07
Q.4	(a)	A thin seamless spherical shell of 1.5m dia. and 10mm thick is filled with a liquid, so that the internal pressure is 2 N/mm ² . Determine the increase in diameter & capacity of the shell. Take $E=2x10^5$ Mpa & 1/m=0.3.	07
	(b)	A weight of 250 N falls by 25 mm on a collar rigidly attached to lower end of a vertical bar 3 m long and 300 mm ² in section. The upper end of the vertical bar is fixed. Find maximum instantaneous stress, maximum instantaneous elongation and strain energy. Take $E = 2 \times 10^5$ N/mm ² .	07


OR

Q.4 (a) Draw Influence Line diagram for forces in member U_2L_2 , L_2L_3 & U_2L_3 for the **07** truss shown in the Figure - 5.

- (b) Two wheel loads of 15 kN & 20 kN are 2m apart, cross a beam of 10m span. 07 Draw the influence line for B.M & S.F for a point 4m from the left support & find the maximum B.M & S.F at this point.
- Q.5 (a) A 50 mm diameter steel shaft of length 1200 mm is used to transmit 100 kW
 07 between a motor and a pump. Determine the lowest speed of rotation at which shear stress does not exceed 80 MPa and angle of twist does not exceed 2°.
 - (b) A hollow shaft has to transmit 300kW power at 80 rpm. If the shear stress is not to exceed 60 N/mm2 and internal diameter is 60% of the external diameter, find the external and internal diameters when maximum torque is 1.4 times the average torque. $G=8 \times 104 \text{ N/mm}^2$.

OR

- Q.5 (a) Find the vertical & horizontal deflections of the joint C of the Truss loaded as shown in figure 6. The c/s areas of members CD & DE are each 2500mm² & those of other members are each 1250mm². Take E=200 GPa.
 - (b) A symmetrical three hinged circular arch of span 40 m and rise 8m carries uniformly distributed load of 30 kN/m over the left half of the span. The hinges are provided at the support and centre of the arch. Calculate the bending moment, radial shear and normal thrust at a distance of 10m from the left support. Refer figure 8.

07