
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC- SEMESTER II- • EXAMINATION -WINTER- 2016

Subject Code: X20901 Subject Name: CIRCUIT & NETWORKS			Date:02/01/2017	
Ti	me:0 truction	2:30 PM to 5:00 PM ons: . Attempt any five questions.		
		Make suitable assumptions wherever necessary.Figures to the right indicate full marks.		
Q.1	(a)	Define Following Terms: (1) Tree (2)Mesh (3)Cut Set (4)Active Elements (5) Passive Elements (6) Bilateral Network(7) Dependant Source	07	
	(b)	Explain Duality with Example.	07	
Q.2	(a) (b)	State and prove maximum power transfer theorem. For the Fig.1, the capacitor has an initial charge $q_0 = 500 \mu C$ with polarity as shown in fig. At t=0, the switch is closed, thereby applying the constant voltage V=50V. Find the current transient.	07 07	
Q.3	(a) (b)	Summarize significance of pole-zero location in S-plane. In Fig.2, the switch is moved from position1 to 2 at t=0, steady state having previously been attained. Find the voltage $V_{\text{c}}(t)$.	07 07	
Q.4	(a) (b)	Explain: (1) Conservation of charge (2) Conservation of Energy Discuss initial conditions in basic elements of network.	07 07	
Q.5	(a)	Enlist conditions for reciprocal and symmetrical network in all types of parameters.	07	
	(b)	For Fig.3 Find $G_{12}(s)$.	07	
Q.6	(a) (b)	Derive Y-parameters in terms of Z-parameters Calculate the Y-parameter of the fig.4	07 07	
Q.7	(a) (b)	Explain Source Transformation with Example. Explain Dot Convention with Example	07 07	

