GUJARAT TECHNOLOGICAL UNIVERSITY PDDC- SEMESTER III- • EXAMINATION -WINTER- 2016

Subject Name: Advanced Fluid Mechanics			:06/01/2017	
		D:30 AM to 1:00 PM Total Marks: 70 ns: Attempt all questions.		
	2. 3.	Figures to the right indicate full marks.		
Q.1	(a) (b)	State and explain Buckingham's π - theorem. Derive the expression of velocity distribution for viscous flow through circular pipe. Also sketch the velocity distribution and shear stress distribution across a section of the pipe.	07 07	
Q.2	(a) (b)	Explain Hardy-cross method of analysis for flow in pipe networks. Explain Euler's equation of motion for three dimensional flows. State its applications.	07 07	
	(b)	OR Derive an equation of Gradually varied flow, and write assumption made in it.	07	
Q.3	(a) (b)	Explain Prandtle's mixing length theory. Determine the most economical section of a rectangular channel carrying water at the rate of 0.5m^3 / s; the bed slope of the channels being 1 in 2000. Take Chezy's constant C = 50.	07 07	
		OR		
Q.3	(a) (b)	Define the term stream function. How does it differ by potential function? Determine the maximum discharge of water through a circular channel of diameter 1 m. When the bed slope of channel is 1 in 1100. Take $C = 60$.	07 07	
Q.4	(a)	Describe Reynold's experiment and discuss the laminar and turbulent flow in	07	
	(b)	pipe. A model of spillway is made to test the flow. The discharge and velocity of flow over the model were measured as 2.5m ³ /sec and 1.5 m/sec. Find the discharge and velocity over prototype which is 30 times larger then it's model. OR	07	
Q.4	(a)	A fluid is flowing through a pipe of 0.30 m diameter having viscosity equal to 1.8 Ns/m^2 . Compute the shearing stress at the pipe wall and within the fluid 50mm from the pipe wall, if the maximum velocity is 2.5 m/s at the centre of pipe. Take sp gravity of fluid = 0.80.	07	
	(b)	Derive the relation for laminar flow between two parallel plates having the mean velocity equal to two-third of the maximum velocity.	07	
Q.5	(a) (b)	Describe various types of hydraulic models. Obtain an equation of continuity for three dimensional flows. OR	07 07	
Q.5	(a) (b)	Discuss the specific energy curve with a neat sketch. Discuss the classification of channel slopes.	07 07	
