Seat No.: _____

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC- SEMESTER IV- • EXAMINATION – SUMMER - 2016

Subject Code:X40904 Subject Name: Theory of Electromagnetics Time:02:30 PM to 5:00 PM Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Q.1	(a)	Let each of the vector $A = 5\overline{a}_x - \overline{a}_y + 3\overline{a}_z$, $B = -2\overline{a}_x + 2\overline{a}_y + \overline{a}_z$, $C = 3\overline{a}_y - 4\overline{a}_z$	07
		extend outward from the origin of Cartesian coordinates system to points A, B and C respectively. Find a unit vector directed from point A toward: (a) to the origin; (b) point B; (c) Unit vector from A to mid point of BC.	
	(b)		07
Q.2	(a)	Define electric field intensity. Derive an equation for the electric field intensity due to line charge with usual notations.	07
	(b)		07
	(b)	Explain vector form of coulomb's law with statement.	07
Q.3	(a)	State and explain Gauss's law to differential volume element.	07
	(b)	State divergence theorem. Find divergence D at the origin if	07
		$D = e^{-x} \sin y \overline{a}_x - e^{-x} \cos y \overline{a}_y + 2z \overline{a}_z$	
		OR	
Q.3	(a)	State and explain the Gauss's law.	07
	(b)	Derive Maxwell's first equation as applied to the electrostatics, using Gauss's law. Also state the Divergence theorem.	07
Q.4	(a)	Define electric potential & potential difference. Also prove $\overline{E} = -\nabla V$.	07
	(b)	Given the potential field, $V = 2x^2y - 5z$ and a point P (-4, 3, 6), find following at point P : (1) the potential V, (2) the electric field intensity E (3) the direction	07
		of E (4) the electric flux density D OR	11
0.4	(a)	Explain and derive the boundary condition for a dielectric-dielectric interface.	07
	(b)	Derive Poisson's and Laplace's equation.	07
Q.5	(a)	State and explain Ampere circuital law.	07
-	(b)	State and explain Biot-Savart's law.	07
	(1.12) 2010	OR	
Q.5	(a)	State and explain Lorentz force equation.	07
	(b)	Give classification of magnetic materials.	07
		2 AU 2 AU 2 AU 10 AU 1 AU 1 AU	1.4

Date:22/11/2016

Total Marks: 70

Enrolment No._____