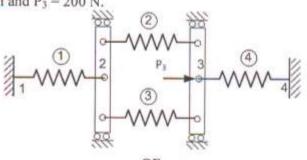
Seat No.: GUJARAT TECHNOLOGI		Enrolment No GUJARAT TECHNOLOGICAL UNIVERSITY		
		PDDC- SEMESTER-VI • EXAMINATION – WINTER - 2016		
Subje	ct Co	ode: X61901 Date:25.10.2016		
Subje	ct Na	ame: Computer Aided Design		
Time:	10.3	0 AM TO 01.00 PM Total Marks: 70		
	1. A 2. M	ttempt all questions. Take suitable assumptions wherever necessary. Egures to the right indicate full marks.		
Q.1	(a) (b)	Explain the benefit of Computer Aided Design. Explain DDA algorithm to scan a line. A line is required to draw from (15, 30) pixel to (62, 44) pixel. Calculate first six positions for the same using DDA algorithm.	0,	
0.2	(a)	Explain PHIGS and IGES graphics standards.	0'	

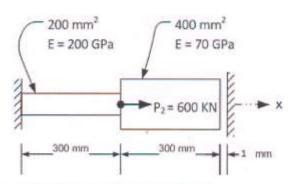
finding intermediate points at u=0.2, 0.4, 0.6 and 0.8.


30°, formulate the equation of a Hermite cubic spline and plot the curve by

(b) For points P₀ = (11, 25) and P₁ = (100, 80) with corresponding slopes 60° and

- (b) For points P₀ = (11, 25), P₁ = (31, 50), P₂ = (70, 70) and P₃=(100, 80), formulate the equation of a Bezier curve and plot the curve by finding intermediate points at u=0.2, 0.4, 0.6 and 0.8.
- Q.3 (a) A rectangle ABCD has vertices A(10,70), B(200,70), C(200,200) and D(10,200). This rectangle is to be reflected about a line P(25,20) and Q(110,150). Determine the vertices of transformed rectangle.
 - (b) Given a point P(80, 40, 20) and using the homogeneous representation, obtain the coordinates after following transformations:
 - Rotate the point P about X axis by 45° CCW followed by rotation about Z axis by 60° CCW.
 - Rotate the point P about Z axis by 60° CCW followed by rotation about X axis by 45° CCW

OR


- Q.3 (a) With help of suitable example, explain translation, rotation and scaling in three dimensions using homogeneous coordinate system.
 - (b) Explain wireframe model, CSG model and B-rep model.
- Q.4 (a) Explain concept of minimum potential energy approach in FEA. 07
 - (b) For the spring assemblage shown below determine nodal displacements using Minimum potential energy approach. Take $k_1 = k_2 = 110 \text{ N/mm}$, $k_3 = 80 \text{ N/mm}$, $k_4 = 100 \text{ N/mm}$ and $P_3 = 200 \text{ N}$.

07

07

- (a) Derive the equation to implement boundary condition in Finite Element Analysis using elimination method.
 - (b) Consider the bar in figure below. Determine the nodal displacements. Use 07 elimination method for handling boundary conditions.

Q.5 (a) Explain the engineering applications of optimization.

07 Two products P and Q are sold by a company. The selling price of product P is 07 Rs. 12 per kg more than its cost price, while for Q it is Rs. 9 per kg more than cost price. The raw materials available for products are Rs. 90 per kg for R and Rs. 70 per kg for S. To make 1 kg of P, 500 gms of R and 700 gms of S are needed. To prepare 1 kg of Q, 600 gms of R and 500 gms of S are needed. The market requirement for the products is 75 kg of P and 115 kg of Q. The availability of raw materials is 100 kg of R and 80 kg of S. How much of each should be produced to maximize profit? Formulate the optimization problem

- With help of suitable example, explain components of an optimization problem. O.5 (a)
 - An open rectangular box with square base is to be made from 48 ft.2 of 07 material. What dimensions will result in a box with the largest possible volume?
