GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER – I • EXAMINATION – WINTER 2012

Subje	ect o	code: X 11902 Date: 21/01/2013	
•		Name: Engineering Thermodynamics	
		.30 am - 01.00 pm Total Marks: 70	
Instr			
		Attempt all questions.	
		Make suitable assumptions wherever necessary. Figures to the right indicate full marks.	
	5.	Figures to the right indicate fun marks.	
Q.1	(a)	Explain open, closed and isolated system along with examples.	07
	(b)	Explain limitations of first law of thermodynamics.	07
Q.2	(a)	An air standard Otto cycle is required to operate between the temperature	07
		limits of 300K and 1800K. Estimate the optimum compression ratio and the	
		corresponding thermal efficiency.	
	(b)	•	07
		OR	0.5
	(b)	Derive steady flow energy equation applied to nozzle.	07
Q.3	(a)	Explain variables affecting efficiency of Rankine cycle.	07
C C	(b)		07
		OR	
Q.3	(a)	Explain adiabatic flame temperature.	07
	(b)	Compare Otto cycle and diesel cycle for the same compression ratio.	07
Q.4	(a)	Explain in brief the concept of available energy and unavailable energy.	07
2.4	(b)	Write short note on joule-Thomson co-efficient.	07
	(~)	OR	•••
Q.4	(a)	Using Maxwell relations derive the Clausius clapeyron equation.	07
	(b)		07
~ -			~-
Q.5	(a)	1	07
	(b)	explain any one of them with neat sketch. Derive Vander wall's equation	07
	(b)	Derive Vander wall's equation. OR	07
Q.5	(a)		07
×	(b)	Explain the principle of increase of entropy.	07
	()		
