GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER – III • EXAMINATION – WINTER 2012

	Subje	ect code: X31102 Date: 28/12/2012 ect Name: Engineering Electromagnetics : 10.30 am - 01.00 pm Total Marks: 70	
		 uctions: 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 	
Q.1	(a)		07
	(b)	the cross product. Given point P(-2,6,3) & $\mathbf{A} = y\mathbf{a}_x + (\mathbf{x} + \mathbf{y}) \mathbf{a}_y$. Express point P in cylindrical & spherical coordinate system. And find vector \mathbf{A} in spherical coordinate system at point P.	07
Q.2	(a) (b)	Explain the faraday's law. Also state & prove the gauss's law. Point charges 1 mC & -2 mC are located at P(3,2,-1) & Q(-1,-1,4) respectively. Calculate the electric force exerted on a 10 nC charge located at R(0,3,1) and the electric field intensity at that point.	07 07
	(b)	$\begin{array}{l} \textbf{OR} \\ \text{The finite sheet } 0 \leq x, y \leq 1 \& z = 0 \text{ plane has a charge} \\ y^2 + 25 \right)^{3/2} nC/m^2, \text{find total charge on the sheet } \& \text{electric field at point P(0,0,5).} \end{array}$	07
Q.3	(a) (b)	Explain vector operator. And also state & prove the divergence theorem. Find the value of integral of D ·d S over a closed surface of sphere $r = 1$. OR	07 07
Q.3	(a)	Derive the Poisson's equations & Laplace's equations. Also explain uniqueness	07
	(b)	theorem. Define electric flux density & for given the potential $V = (10 \sin\theta \cos\theta) / r^2$, find the electric flux density D at P (2, 90°,0).	07
Q.4	(a) (b)	If V = 0 at $\emptyset = 0$ & V = 100 at $\emptyset = \pi/6$, calculate potential V & electric field intensity E .	07 07
Q.4	(a) (b)	OR Define Bio Savart law & derive the expression for force & torque on closed circuit. For ferrite material which is operating in the linear mode with B=0.005 T & $\mu_r = 50$. Determine the magnetic susceptibility, magnetization & magnetic field intensity.	07 07
Q.5	(a) (b)	Explain the Faraday's law for time varying field. Also Describe the retarded potentials. State Maxwell's equations in point form & explain physical significance of the equations.	07 07
OR Q.5 (a) Define the term Magnetization. And explain magnetic boundary condition.			07
Q.3	(a) (b)	State & prove Poynting theorem relating to the flow of energy at a point in space in an electromagnetic field.	07 07
