Seat No.:	Enrolment No.
-----------	---------------

Subject code: X61102

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER - VI • EXAMINATION - WINTER 2012

Date: 28/12/2012

Subject Name: VLSI Technology Time: 10.30 am - 01.00 pm **Total Marks: 70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 0.1 (a) State Moore's Law and explain different VLSI Design style in short. **07 (b)** Explain the fabrication steps of nMOS transistor with necessary sketches. 07 **Q.2** (a) Explain MOSFET CV characteristics with necessary derivation and figures. 07 Calculate the threshold voltage V_{TO} at VSB = 0 for a polysilicon gate n-07 channel MOS Transistor, with the following parameters: substrate doping density $N_A = 10^{-16}$ cm⁻³, Polysilicon gate doping density $N_D = 2 \times 10^{-20}$ cm⁻³, gate oxide thickness $t_{ox} = 500 \text{ Å}$, and oxide-interface fixed charge density N_{ox} = 4×10^{-10} cm⁻² Note that $\epsilon_{0x} = 3.97\epsilon_{0}$, $\epsilon_{si} = 11.7 \epsilon_{0}$, intrinsic carrier concentration of silicon $n_{i} = 1.45 \times 10^{-10}$ and $\epsilon_{0} = 8.85 \times 10^{-14}$ Explain MOSFET capacitance with necessary derivation and figures. 07 (a) What is scaling? Why it is required? Explain Constant Voltage scaling. 0.3 **07 (b)** Draw and explain VTC of CMOS Inverter. 07 A CMOS inverter has $V_{TO,n} = 0.6 \text{ V}$, $V_{TO,p} = -0.7 \text{ V}$, $k_n = 200 \mu\text{A/V}^2$ and k_p 07 **Q.3** = $80 \mu A/V^2$. Obtain NM_H and NM_L for $V_{DD} = 3.3 V$ (b) Draw the Resistive load Inverter circuit diagram. Derive critical voltage points 07 V_{OH} , V_{OL} , V_{IH} and V_{IL} for it. 07 **Q.4** (a) Explain three stage CMOS ring Oscillator. (b) Explain NORA CMOS Logic Circuits. **07 Q.4** Explain on chip clock generation and distribution. 07 (a) Explain the basic principle of pass transistor circuit. Explain logic "1" transfer **07 Q.4 (b)** and logic "0" transfer. Explain CMOS Transmission Gate. 07 Q.5 **(b)** Explain Scan based techniques. 07 OR (a) Give answer of the following question 07 Q.5 (i) Draw gate level schematic of the clocked NOR- based JK latch and CMOS AOI realization of the JK latch. (ii) Draw CMOS Master- slave D FF. Draw and explain general architecture of FPGA and CPLD 07
