Seat No.: _____

Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER - VI • EXAMINATION - WINTER 2012

Subject code: X61103 **Subject Name: Digital Signal Processing** Time: 10.30 am - 01.00 pm

Date: 31/12/2012

Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

- Define continuous & discrete time signals. And explain the concept of frequency in 0.1 (a) 0 continuous & discrete time signals. 7
 - (b) Give the classification of Systems. Check the systems for Linearity, Causality, and 0 Time Variance. 7 i) $y_1(n) = |x(n)|$ ii) $y_2(n) = x(-n)$
- 0.2 (a) Define the z-transform & ROC. Explain the properties of the region of convergence 0 of z-transform with illustrations & sketches. 7
 - Define linear convolution & discuss its significance. If Impulse response of Linear 0 **(b)** Time Invariant system is given by $h(n) = \{1, 2, 1, -1\},$ determine the 7 response of the LTI system for the input signal $x(n) = \{1, 2, 3, 1\}$.

OR

(b) Define correlation & Discuss its application. Determine the cross correlation values 0 of the two sequences, $x(n) = \{1, 0, 0, 1\} \& h(n) = \{4, 3, 2, 1\}$ 7

Q.3	(a)	State & prove the Translation & Convolution property of	Z transform.	0 7
	(b)	Determine the z transform for		0
		1) $x_1(n) = \cos(w_0 n) u(n)$		7
		2) $x_2(n) = -a^n u(-n-1)$		

OR

Q.3	(a)	Discuss causality & stability in terms of z-transform.	0
			7
	(b)	Determine the inverse z-transform for	0
		1) $X(z) = 1/(1-1.5z^{-1} + 0.5z^{-2})$ for all possible sequences.	7
		2) $H(z) = 1/((1+z^{-1})(1-z^{-1})^2))$ for ROC: $ z > 1$.	

Q.4	(a)	Develop radix 2 FFT algorithm using DIT. Compute 4 point DFT of sequence	0
		$x(n) = \{0, 1, 2, 3\}$ using DIT FFT algorithm.	7
	(b)	Explain Goertzel algorithm.	0

1

7

OR

		UK UK	
Q.4	(a) (b)	The transfer function of a discrete causal system is given $H(z) = (1 - z^{-1}) / (1 - 0.2 z^{-1} - 0.15 z^{-2})$ 1) Find the diff. equation. 2) Draw cascade & parallel realization. 3) Calculate the impulse response of the system. Define circular convolution. How it is different form linear convolution. Determine the linear convolution for given sequences $x_1(n) = \{1, 2, 4\}$ & $x_2(n) = \{1, 2\}$ verify the result using circular convolution.	0 7 0 7
Q.5	(a) (b)	Enlist the properties of Fourier transform. Determine & sketch the frequency spectrum for i) $x_1(n) = a^n u(n)$ ii) $x_2(n) = \delta$ (n-3). Design a discrete time low pass filter using Butterworth approximation by impulse invariance. The specifications are as follows $0.89125 \le H(w) \le 1$ for $0 \le w \le 0.2\pi$ $ H(w) \le 0.17783$ for $0.3\pi \le w \le \pi$ OR	0 7 0 7
Q.5	(a) (b)	Discuss IIR filter design by approximation of derivative method. Obtain analog filter transfer function $H(s) = 1/(s^2 + 16)$ Enlist diff. types of architecture of DSP. Discuss any two in brief.	0 7 0 7
