
Seat No.:	Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY

PDDC - SEMESTER-I • EXAMINATION – WINTER 2013

Su Ti	bject me: 1 tructio 1.	Attempt all questions. Make suitable assumptions wherever necessary.	
Q.1	(a) (b)	Explain different types of beam, support and loading with sketch. An engine operating on Diesel cycle has maximum pressure and temperature of 45 bar and 1500° C. Pressure and temperature at the beginning of compression are 1 bar and 27°C. Determine air standard efficiency of the cycle. Take $\gamma = 1.4$ for air.	07 07
Q.2	(a) (b)	Explain Linear, shear, lateral, thermal and volumetric strain. Differentiate between ductile and brittle materials. What are significant behaviors of these materials under tensile loading? OR	07 07
	(b)	Explain Carnot cycle on p-v and T-s diagram.	07
Q.3	(a) (b)	Explain the working of Four stroke Petrol engine with neat sketch. Derive the equation of work required in single stage reciprocating air compressor without clearance.	07 07
Q.3	(a) (b)	OR Explain the working of Vapour Compression Refrigeration system. Explain advantages of multistage in reciprocating air compressor. Write applications of compressed air.	07 07
Q.4	(a)	Explain the difference between: (i) Positive Displacement pump and roto-dynamic pump. (ii) Single acting pump and Double acting pump Explain with a past elected split air conditioner and state their advantages.	07
	(b)	Explain with a neat sketch split air conditioner and state their advantages. OR	07
Q.4	(a) (b)	Explain Linear, shear, lateral, thermal and volumetric strain. A steel bar 3.5 m long and 2000 mm ² in area hangs vertically, which is securely fixed on its lower end. If a weight of 10 kN falls on the collar from a height of 8 mm, determine the stress developed in the bar. What will be the strain energy stored in the bar? Take E as 200 GPa. Explain Linear, shear, lateral, thermal and volumetric strain.	07 07
Q.5	(a)	An Aluminum rod of 25 mm diameter and 1.7 m long is subjected to rise in temperature by 35° C. Calculate i) natural expansion ii) if natural expansion is prevented, the stress developed in the bar iii) axial force in the bar. Take $E = 70$ GPa, Coefficient of thermal expansion $\alpha = 18 \times 10^{-6}$ per °C.	07
	(b)	For torsion of a circular shaft, derive the equation $T/IP = \tau/R = C\theta/L$ with usual notations.	U
		OR	
Q.5	(a)	Derive relation between shear force, bending moment and rate of loading.	07
