GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-VII • EXAMINATION – WINTER • 2014

Subject Code: X 71104 Subject Name: Satellite Communication

Date: 05-12-2014

Time: 10:30 am - 01:00 pm

Total Marks: 70

- Instructions:
 - 1. Attempt all questions.
 - 2. Make suitable assumptions wherever necessary.
 - 3. Figures to the right indicate full marks.
- Q.1 (a) A satellite is in an elliptical orbit with a perigee of 1000 km and an apogee of 4000 km. Using a mean earth radius of 6378.14 km, find the period of the orbit in hours, minutes, and seconds, and the eccentricity of the orbit.
 - (b) A geostationary satellite is located at 90°W. Calculate the azimuth angle for an earth-station antenna at latitude 35°N and longitude 100°W. Also find the range and antenna elevation angle.
- Q.2 (a) With the aid of a neat sketch, explain what is meant by each of the angles: 07 inclination; argument of perigee; right ascension of the ascending node
 - (b) State Kepler's three laws of planetary motion. Explain orbital perturbations 07 related to nonspherical earth.

OR

- (b) Describe communication subsystems of the satellite.
- Q.3 (a) A multiple carrier satellite circuit operates in the 6/4-GHz band with the 07 following characteristics.

Uplink: Saturation flux density: -67.5 dBW/m²; input backoff: 11 dB; satellite G/T: -11.6 dBK⁻¹

Downlink: Satellite saturation EIRP: 26.6 dBW; output backoff: 6 dB; free-space loss: 196.7 dB; earth station G/T: 40.7 dBK^{-1} .

Calculate the carrier-to-noise density ratios for both links and combined value. Ignore other losses.

- (**b**) Answer the followings:
 - 1. Explain what is meant by amplifier noise temperature and system noise temperature referred to input.
 - 2. What is spin stabilization?

OR

- Q.3 (a) Define EIRP and discuss basic transmission theory to calculate the power 07 received by an earth station from a satellite transmitter.
 - (b) Solve the followings examples:
 - 1. Two amplifiers are connected in cascade, each having a gain of 10 dB and a noise temperature of 200 K. Calculate the overall gain and the effective noise temperature referred to input.
 - 2. Thermal noise in an earth station receiver results in a $(C/N)_{dn}$ ratio of 20 dB. A signal is received from a bent pipe transponder with a carrier to noise ratio $(C/N)_{up} = 20$ dB. If the transponder introduces intermodulation products with (C/I) ratio = 24 dB, what is the overall (C/N) ratio at the receiving earth station?
- **Q.4** (a) Discuss FDMA in relation to a satellite communications network.

07

07

07

07

	(b)	Describe (1) sun synchronous orbit (2) Iridium system.	07
		OR	
Q.4	(a)	Write short note on DAMA (demand access multiple access)	07
-	(b)	Discuss propagation effects that are not associated with raindrops or ice crystals.	07
Q.5	(a)	Explain fundamental concept behind most VSAT systems and describe basic VSAT network architectures.	07
	(b)	State briefly the areas of applications for which you feel satellite communication system is best suited. Write brief note on GPS.	07
		OR	
Q.5	(a) (b)	Draw and explain block diagram of a DBS-TV receiver. Explain general arrangement of position locations with GPS in detail.	07 07
