Seat No.: Enrolment No.

GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-VI • EXAMINATION - SUMMER • 2015

Subject Code: X61901 Date: 08/05/2015 **Subject Name: Computer Aided Design**

Time: 10:30 am - 01:00 pm **Total Marks: 70**

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- 0.1 Define CAD. Differentiate between conventional design and computer aided 07 (a) design. State advantages of computer aided design.
 - What is the two dimensional transformations? Discuss translation and scaling **07 (b)** with suitable examples.
- **Q.2** (a) Consider \triangle ABC having coordinates A(5,5), B(8,5) and C(5,10). Determine the 07 new vertex position if triangle is rotated by 60° anticlockwise about vertex A.
 - What is wire frame modeling? Explain wireframe modeling with its advantages **(b) 07** and disadvantages.

OR

- What are the difficulties with wire frame modeling? How surface modeling 07 **(b)** overcomes it.
- **Q.3** What is parametric representation? Describe recursive method to represent an 07 (a) ellipse in parametric form.
 - Explain following sketch features: 07 **(b)** (a) Extrude (b) revolve (c) sweep (d) Loft (e) Cut (f) spring (e) spiral

- Explain CSG tree structure with suitable example. State advantages of CSG Q.3 07 (a) representation.
 - Discuss manipulation in solid modeling. 07 **(b)**
- **Q.4** What do you mean by data translator? Describe the types of data translators. 07 (a) 07

Derive element stiffness matrix by potential energy approach. **(b)**

- Discuss different types of analysis for FEM, also mention advantages and **Q.4** (a) **07** limitations of FEM.
 - A stepped shaft is shown in fig 1. Determine the stresses and the deflection in 07 **(b)** each of section using elimination approach. Assume uniform material having E=90Gpa and axial force 50 kN. $A_1 = 500 \text{ mm}^2 A_2 = 400 \text{ mm}^2 A_3 = 300 \text{ mm}^2$ L_1 , L_2 , $L_3 = 600$ mm

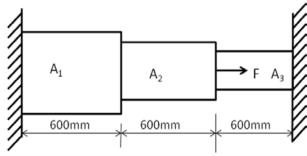


Fig.1

Q.5	(a)	What is optimization? State the application of optimization in engineering.	07
	(b)	Explain the graphical representation of design constraint.	07
		OR	
Q.5	(a)	Explain Johnson's method of optimization.	07
	(b)	State various optimization techniques. Explain any one in brief.	07
		- · · · · · · · · · · · · · · · · · · ·	
