GUJARAT TECHNOLOGICAL UNIVERSITY PDDC - SEMESTER-VIII • EXAMINATION - SUMMER • 2015

Subject Code:X 81901 **Subject Name: Thermal Engineering** Time:10:30 am - 01:00 pm

Date: 07/05/2015

Total Marks: 70

Instructions:

1. Attempt all questions.

2. Make suitable assumptions wherever necessary.

3. Figures to the right indicate full marks.

Q.1	(a) (b)	Derive an expression for mass flow rate of steam through nozzle The throat diameter of round section of nozzle is 8 mm. Steam with initial pressure of 10 bar and 250°C of temperature is to be expanded down to a back pressure of 1.0 bar. Determine : 1. Velocity at throat	07 07
		 Velocity at threat Velocity at exit Flow rate of steam Size of Divergent 	
Q.2	(a)	Give classification of steam turbine and explain any one type of steam turbine.	07
	(b)	Write a short note on : Governing of steam turbine	07
		OR	~ -
	(b)	What do you mean by compounding of steam turbine ? Enlist the different methods for it. Draw a neat sketch for any one.	07
Q:3	(a)	Explain Parson's reaction turbine. Why it is called 50% reaction turbine	07
	(b)	Parson's reaction turbine which has the following particulars: 1. Speed=1500 rpm	07
		 Mean diameter of rotor=1meter Stage efficiency = 80% Speed ratio=0.7 Blade outlet angle=20° Determine the isentropic enthalpy drop in the stage. 	
Q.3	(a)	Define the following : 1. Speed ratio 2. Blade velocity coefficient	07
	(b)	3. Nozzle efficiency. Define blade efficiency and hence derive an expression for maximum blade efficiency for a single stage impulse steam turbine.	07
Q.4	(a)	Discuss briefly the methods employed for improvement of thermal efficiency for an open cycle gas turbine plant.	07

- (b) The air enters the compressor of an open cycle constant pressure gas turbine at a pressure of 1 bar and temperature of 25°C. The pressure of air after compression is 5 bar. The isentropic efficiencies for compressor and turbines are 80% and 82% respectively .The air fuel ratio used is 90:1, flow rate of air is 3.0 kg/sec. Calorofic value of fuel=41800 kJ/kg.Calculate Exit temperature from compressor
 Exit temperature from turbine
 Net work developed
 Power developed

		4. Fower developed OR	
Q.4	(a)	State the fundamental difference between the jet propulsion	07
2	(b)	and rocket propulsion. Explain the working difference between propeller-jet, turbo-jet and turbo-prop.	07
Q.5	(a) (b)	Explain reheat cycle with neat sketch. Explain regenerative cycle with neat sketch.	07 07
Q.5	(b) (a)	OR Explain the various methods of attachment of blades to	07
	(b)	turbine rotor. Explain various losses in steam turbine	07

07