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INSTRUCTIONS: (1) All questions are compulsory.                                 

                          (2)Figures to the right indicate full marks.

1.   Attempt any four:                                                                                                                            [08]
      [a] Find two vectors in R2 with Euclidean norm 1 whose Euclidean inner product with 

              (3, -1) is Zero.

      [b] Verify Cauchy – Schwarz inequality for 
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 =  ( 0, - 2 , 2 ,1) , 
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= ( -1 -1,1,1 ).

      [c] Find reduced row echelon form of  
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 , ad-bc 
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 0.

      [d] For which real values of λ do the following vectors form a linearly dependent set 

             in R3 
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 = (  λ , - 1 / 2 , - 1 / 2 )  , 
[image: image7.wmf]2

v

= (- 1 / 2  , λ , - 1 / 2 )  , 
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 = (  - 1 / 2 , - 1 / 2 ,  λ ) .

      [e] Find all values of a, b and c for which A is symmetric , where

                                             A = 
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       [f] Show that the set of non-singular 2×2 matrices is not a vector space with the standard 

            matrix addition  and scalar  multiplication .

.                                        
2. Attempt any two:                                                                                                                 [08]                                                                               

     [a] Define reduced row echelon form. Find rank of the matrix A by reducing it to
           Row Echelon form, where 

                                                   A =. 
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    [b] Show that the set of all 2×2 matrices with real entries is a vector space if addition 

           is defined to be matrix addition  and scalar multiplication is defined to be matrix 

           scalar multiplication.

    [c] Find a  basis  for  the nullspace of  A ,where

                                                A=  
[image: image11.wmf]113

544

762

-

æö

ç÷

--

ç÷

ç÷

-

èø


3 [a] show that V=
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 is not a vector space, where addition and scalar                            [12]

          multiplication is defined as 
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 ) , 
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= ( 
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 , 
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 ) then 
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 + 
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 )   and   k 
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 =  ( k
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 , 0 ) , where k is any real number.

   [b] Define subspace of a vector space. Let V =  
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R

 = {  ( a, b, c ) /a, b ,c
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R} and 

          Let w = { (  x , y, z) / x – 3y +4z = 0 , x, y, z є R } then show that  w is a subspace of  V.                                          

   [c] Define span of a set. Determine whether the given vectors  
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 = (2 , 2 ,2), 
[image: image30.wmf]2

v

= ( 0 ,0,3)
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   = (0 ,1 ,1) span R3 .

                                                         OR

3 [a] Define basis for a vector space. Find basis and dimension of subspace                          [12]

             W = {1 + x , 1 + x + x2, 1 – x – x 2, 1 + 2x + x2 } of   P2.

   [b]  
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  = ( -1 ,2,3 ) , 
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  = ( 2 ,-4,-6 ), 
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 = (-3 ,6,0 ) are three vectors in R3 that have

          initial points at  the origin. Are  they  lies  on the same line.

   [c]   Find a standard basis vector that can be added to the set 
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          basis for R3  ,where 
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  = (-1 ,2, 3 ), 
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  = (1 , -2,-2 ).

4 [a]   Find   rank of a matrix A by   using the definition of   determinant, where                  [12]
            A = 
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   [b] For which values of   ‘a’ will the following system   have no solution? Exactly one      

           Solution? Infinitely many solutions?

                x + 2y – 3z = 4

               3x – y + 5 z = 2

               4x + y + ( a2 – 14 ) z = a +2 .

   [c] Using Gauss – Jordan   method, find inverse of the matrix

              A= 
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                                        OR

4 [a]   Solve by Gauss – Jordan Elimination method                                                           [12]

           x1 +  3 x2 - 2x3 +  2x5 = 0

          2x1 +  6x2 - 5x3   -   2x4 + 4x5  - 3x6 =  - 1

          5x3 + 10 x4 + 15x6  =  5

          2x1 +  6x2  + 8x4 + 4x5 + 18x6  =  6

   [b]  Solve the matrix equation for x

           X 
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   [c] (1) Show that f1 = 1, f2 =
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               vectors in 
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        (2)  If
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are independent vectors, show that the sums 
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   are independent. 

                                                                  THE  END                                  
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