GTU

Draft Document

Proposing a new scheme to design and evaluate GTU question papers

Marwadi Education Foundation 13th March 2014

Contents

<u> Part - A</u>

- 1. Proposed design flow
- 2. Sample question paper scheme

<u> Part – B</u>

- 1. Ideatech
- 2. Design Clinic

"GTU Syllabus & Question Paper Scheme"

<u> Part - A</u>

The design aspects related to syllabus and question paper is based on the following teaching –learning – attributes

	<u>ATTRIBUTES</u>
1.	REMEMBERING
2.	UNDERSTANDING
3.	APPLICATIONS
4.	ANALYSIS
5.	SYNTHESIS & DESIGN

1. Remembering - 20%

- Definition's
- Formulae's
- Graphs & Charts
- Derivation's

2. Understanding - 30%

- Concepts & Principle's
- Design Equations Process & Procedures
- Tools & Techniques (H/W + S/W)
- Direct substitution: Concept based problems

3. Applications - 20%

- Examples of Application of Principles in real world
- S/W operational skills & capabilities
- Paper Design (Simple Problems)
- Validating Paper Design with S/W Design
- Verifying & Studying specifications (Lab Industry visit, etc.) - Linkage with item 4

4. ANALYSIS - 15%

- Understanding Specification & Redefining Specifications for new design
- S/W based simulations
 - simulation with redefined specs and tweaking for novel outcomes or industry applications
 - with the option of incorporating new concept ideas & taking it to next level. For translation or conversion to working model.
- ** Strategic Analysis leading to Industry needs Result Interpretation & Publication conference Impact & outcome Scenario's

Notes:

- Basic idea: To spot novel students ideas; & to merge the gap between theory & Practice
- To study inter relationship among design parameters.
- To write simple eq. based algorithm

5. Synthesis & Design - 15%

- Design problem formulation & Spec generation
- Tactical Problem Solving leading to context** (Transition from Strategic to Tactical)
- Design for Results
- Prototyping & S/w based conforming
- Publications & Patents

Consolidating

• Suggested question paper scheme for;

1. UG

2. PG

Proposed Architecture of GTU-UG Paper Scheme

• Remembering

- Definition
- Formulas Direct application Problems (numerical)
- Derivations

Understanding

- Design Process Flow
- Hardware Component and circuits (exploded view) transition from subsystem to system level
- Software Proficiency : commands, layout scheme & translation techniques to prototyping - capability to utilize software to set up a schematic architecture leading to virtual test bench

• Application

- Produce Paper Design (with given Space's)
- Manual Design \downarrow (translation from manual to software)
- Software Design
- Validate using Simulations
- Interpretation of outcomes

30 marks

30 marks

40 marks

Proposed Final Architecture of GTU-PG Paper Scheme

• Application

- Produce Paper Design (with given Space's)
- Manual and Software Design (translation from manual to software)
- Simulate, Validate and Interpret

Analysis

- Transition from conventional design knowledge to towards Strategic Design
- Spec 1 to Proposed Spec 2
- And Interpretation in terms of parameter relationships
- Note: Can be Journal paper based .

• Synthesis & Design

- Transition from strategic knowledge towards tactical knowledge
- Ideation & Tactical Design validation via S/W based simulations
- Compare, interpret, propose, write, and communicate to Journal
- Linkage to design clinic and technical report (ideation meet)

30 marks

50 marks

20 marks

Sample Question Paper Scheme Draft Only (a subtopic has been handpicked for the purpose of demo) Mechanical Engineering

Subject :Alternate Energy Sources(Course of 6th Semester)Topic :Wind Energy

Part 1 : [Remembering] weightage : 20%

- 1. What is optimum velocity?
- 2. Draw the pressure and velocity diagram across the rotor of wind turbine.
- 3. list methods which are used to control the fluctuation of power in wind turbine.

Part 2 : [understanding] Weightage : 30%

- 4. Explain the significance of optimum velocity.
- 5. Prove that in case of horizontal axis wind turbine maximum power can develop when exit velocity is one third of wind velocity.
- 6. With neat sketch explain Wind Energy Conversion System (WECS).

Part 3 : [Application] Weightage : 50%

- 7. What is the range of optimum velocity in the actual practice?
- 8. Explain practical importance of power coefficient.
- 9. How the fluctuation of power is controlled practically during the operation of wind turbine?

Civil Engineering

Subject :Earthquake EngineeringTopic :Fundamentals of EarthquakeVibrations

(a subtopic has been handpicked for the purpose of demo)

1. Remembering - 20%

- 1. What is the D' Alembert's equation equilibrium?
- 2. Define : Time period, SDOF system, Dynamic Degree of Freedom, Resonance and Natural frequency.

2. Understanding – 30%

- 3. Explain about the dynamic equilibrium of a SDOF system subjected to free vibration.
- 4. For a given structure comprising of two or more floors, explain the process of evaluating the time period and natural frequency.
- 5. Why is structure comprising of two floors can be evaluated as two dynamic degree of freedom.

3. Application - 50%

- 6. Give examples of Strucure which can be idealized and analyzed as SDOF system.
- 7. Design a framed foundation in such a way that the frequency ration does not exceed 0.5, if it supports a machine having a mass of 5000kg and operating at a speed of 200rpm. Consider the frame to be supported on two columns having size of 300mm*300mm and concrete grade of M25. Assume the depth of foundation 2.0m from ground level. Consider beam as a infinitely rigid.

Electrical Engineering

- Subject: Power Electronics (Course of 6 th Semester)
- Topic : Inverter

(a subtopic has been handpicked for the purpose of demo)

Part 1 [Remembering] 20%

- 1. Explain the performance parameters of inverter.
- Define harmonics and write mathematical equations
- 2. What is selective harmonics eliminating? Explain selective harmonics elimination in brief.

Part 2 [Understanding] 30%

- 3. Source and Conditions for harmonic generation in devices, systems and circuits with examples.
- Examples of real world problems on harmonics
- The single phase half bridge inverter has a resistive load of R = 2.4 Ω and the dc input voltage is V_s = 48 V. Determine
 (1) the rms output voltage at fundamental frequency, (2) the THD (3) the Distortion factor (DF), (4) harmonics factor (HF) and DF of lowest order harmonic (LOH).
- 4. Calculate the angle α for selective harmonics eliminating techniques to removes the 5th and 7th order harmonics.

Part - 3 [Application] 50%

- 5. Explain the shut active filter using selective harmonics elimination.
- 6. In the above Q.5, if have to remove the 3rd, 5th, 7th and 11th order of harmonics, using single phase full-bridge inverter with multiple bipolar notches. Determined the number of notches to be introduced and their angle.

PART - B

- To spot and recognize 10% good students, and to motivate them to participate, undertake, and pursue: Application oriented concepting, analysis & design engineering - having the potential of converting to a grand project scheme, and added equivalence to a niche theory paper – expanded knowledge.
- To place & position and consider as per recommendation of the technical committee following;
 - 1. Scrutiny Academic / Research's/ Industry
 - 2. Explore and thread
 - 3. Transact to Design Clinic
 - 4. Separate exam scheme based on project leading to Grand – Project – Report
 - To provide Technological knowledge
 - To provide P. M. skills
 - Funding avenues and opportunities

Ideation Meet :

GTU Technical Report and "IDEA-TECH" Meet

- To study & prepare a GTU technical report document (GTU idea & ... report), say a technology journal of new ideas – every six months, showcased (seminar) amongst industries and researchers. And to handpick 10% students projects for IDEA-TECH, under ideation week hosted by GTU.
- (Ideation Week)
- Purpose:
 - 1. New Concepts
 - 2. Problem Identifications
 - 3. Training and skilling
 - 4. Patent Initiatives
 - 5. Industry Interface Initiatives
 - 6. Entrepreneurship initiatives

Design Clinic – Level 1

- The idea is to bring together Teachers, Researchers, Students (UG and PG) under one roof to interact, guide, share, and nurture expertise - Knowledge & Resources; for the sole purpose of advancement, betterment, and sustained outcomes. Ideation week (IDEA-TECH) will function as the connecting link and trigger.
- <u>Mechanism</u>:
- To identify through scrutiny, a team of people with new ideas and concepts that could possibly impact technology, industry, lives and civilizations.
- Inputs from Ideation week and Technical report.
- Final Impact and Feasibility studies.... (transition to level two – prototyping)

Level – 2

- Input source: Recommendations following Impact and feasibility study reports
- To consider & take high impact value ideas to market via the path of Industry & entrepreneurship.
- To fund such ideas & concepts
- To create knowledge , advance , and apply knowledge for betterment of life and humanity.
- Final outcome: Produce , Propagate , Preserve, and Protect (4P's)