Gujarat Technological University

Report: Faculty Development Program (FDP) of new curriculum for Degree Engineering Program on 21st September 2013 at GTU Chandkheda Campus.

"Elements of Electrical Engineering"

More than 90 faculty members from various degree engineering colleges affiliated to GTU attended the FDP.

The objectives of the program were:

- To discuss the content to be covered for various topics,
- How to deal with the course
- To discuss about the progressive assessment and practical examination
- How to use E-learning resources for the course

These objectives were intended for synchronization among faculties about the contents of syllabus and to adapt best practices for teaching the course.

Session 1	:	11:00 am to 12:00 noon
Speaker	:	Prof. V B Babaria, Ex. Professor & Head of EE Dept., LD CE
Topic	:	Teaching methodology for Elements of Electrical Engineering

The first lecture was delivered by Prof. V B Babaria, Ex. Professor and Head, Electrical Engineering Dept, L D College of Engineering, Ahmedabad. He talked about

- Explained the importance of the course as it is fundamental course and being offered in all the branches of engineering.
- Gave idea about how the course can be made interesting for the students of first year by giving various practical aspects.
- Depth and difficulty levels for each topic were clearly explained.
- Asked faculty members to put more stress on practical instead only theory.
- Shared his experience and motivated the faculty members to work for the excellence and devotion towards the course.

Session 2	:	12:00 noon to 1.00 pm
Speaker	:	Dr. A J Mehta, Director, Gujarat Power Engineering and Research
		Institute, (First PPP mode code), Mehsana
Topic	:	Content coverage, and changes in the new syllabus of EEE

Dr. Mehta acts as co-coordinator for the syllabus revision committee of EE, GTU.

- Introduced the committee members involved in the syllabus revision process.
- He gave the overview of revised syllabus of the course and clearly brought out the changes incorporated in different topics.
- He also justified the objectives of the revision with importance of outcome based education and accreditation of engineering programs.
- He explained that the new format of syllabus is as per NBA requirement where prerequisite, percentage weightage of each module, course outcomes, list of experiments, etc... are clearly mentioned.
- The participants were also informed about the flexibility given to individual institute about the laboratory work.
- They were also updated about submission of innovative experiments by individual institute at the end semester to GTU.
- He also talked about Active learning assignments incorporated as a part of progressive assignment of theory component and case study incorporated as a part of progressive assignment of practical component.

Session 3	:	2:00 pm to 3.00 pm
Speaker	:	Pearson Publication
Topic	:	e- Learning solutions for Engineering

The post lunch session was delivered by the Mr. Bhusan Sharma and Ms. Zahida Sama, representative of Pearson Publication Ltd. Mr. Bhusan talked about the learningware which enables the faculty and students for online interaction, sharing the information, class note examination, virtual experimentation and evaluation online. Ms. Zahida informed about Think Tank software which is Pearson's collection of 3000 books. The collection may be accessed by the faculty members free for a week period through their institute IP address.

Session 4	:	3:00 pm to 4:00 pm
Speaker	:	Cognifront Ltd.
Topic	:	e- Learning tools

The session was delivered by the Mr. Jaydev Bhatt, Hetalked about the software tool available for better visualization of the engineering concept by animation. He showed various examples of electrical engineering to the participants.

Session 5	:	3:30 pm to 4.30pm
Speaker	:	
Topic	:	Open discussion

In this session, the participant discuss about inclusion of few topics in the new syllabus such as Temperature effect on resistance, Charging discharging of capacitor and rise and decay of current in inductive circuit. In the conclusion session, Dr. G. P. Vadodaria, In-charge Registrar and In-charge Controller of Examination of GTU briefed the participants about common mistakes done by paper setters and examiners. He also told that utmost care must be taken while drawing the question papers and assessing the answer books.

Concluding remarks were given by Dr A J Mehta and thanked all the participants for their active participation in FDP.

"Physics Curriculum Overview"

On 21st September, 2013 Gujarat Technological University had organized a FDP on curriculum overview of Engineering Physics. On the process of up gradation of academic contain University has decide to review the curriculum and upgrade it on the current academic year. For the effective and uniform implementation of curriculum and to streamline the depth of topic it was necessary to organize this program.

More than 60 institute representatives were present on that day. First necessary of revision was discussed. Brief idea about importance of topics to fill gap of Pos and PEOs were discussed for NBA accreditation. Individual discussion on chapter wise and topic wise was carried out. Newly introduced minor project activities were discussed and sample cases were given to participants. Review and discussion on newly introduced chapters were carried out by Dr. Nirali Gondaliya.

Dr. Amit Patel had carried out detail presentation on depth of each and every topic and subtopics to maintain uniformity at all institutes. The brief is discussed as below:

UNIT1: DIELECTRICS			
TOPICS	COURSE OUTCOME	DEPTH REMARK	
Definitions : Electric field intensity, Electric flux, Dielectric parameters	Define Electric field intensity, Electric flux and various Dielectric parameters.	 Definitions, Significance, Unit, Equations 	
Types of Dielectric materials : Solid, Liquid and Gaseous	→Explain Dielectric Polarization and differentiate different types of polarizations. →Understand the	 Classification, Explanation, Examples, Applications 	
Classification of electrical insulating materials			
Claussius-Mosotti equation	properties of dielectric materials	Classification,Explanation	
Uses of Dielectric Materials; Capacitors: Single and multilayer, Polymeric Film, Electrolytic; Power and Distribution transformers, other applications	Understand the utilization of dielectric materials in different areas.	explanation	

UNIT2: MAGNETIC MATERIALS			
TOPICS	COURSE OUTCOME	DEPTH REMARK	
Definitions: Magnetic moment, Magnetic dipole, Magnetic Filed strength, Magnetic flux density, Intensity of magnetization, Magnetic dipole moment, Magnetic Field intensity, Magnetic permeability, magnetic susceptibility, Bohr magnetron	Define Magnetic moment, Magnetic dipole, Magnetic Filed strength, Magnetic flux density, Intensity of magnetization, Magnetic dipole moment, Magnetic Field intensity, Magnetic permeability, magnetic susceptibility, Bohr magnetron	 Definitions, Significance, Unit, Equations 	
Classification of Magnetic Materials on the basis of magnetic moment	Classify magnetic materials based on magnetic moment and different properties.	 Classification, Explanation 	
Soft and Hard Magnetic Materials	Distinguish between Soft and Hard Magnetic Materials: Their examples and applications.	 Classification, Explanation 	

UNIT3: ACOUSTIC AND ULTRASONIC			
TOPICS	COURSE OUTCOME	DEPTH REMARK	
Introduction, Classification and Characteristics of sound	→Define acoustics and sound; know about	Explanation	
Sabine's formula for reverberation (Without Derivations) Introduction of Absorption co- efficient	types of sound and its properties. →Analyze Music and Noise with measurement techniques and further	Explanation (no derivation)	
Sound absorbing materials	classifications	Introduction	
Factors affecting the acoustics of building and their remedies	→Know the importance of reduction of noise- pollution, its	Explanation	
Sound Insulation	measurement and reduction techniques.	Explanation	
Noise Pollutions	→Design ideal	Explanation	
Noise Control in machines	environment for noise- pollution free structures.	Explanation	
UNIT4: SUPERCONDUCTIV	/ITY		
TOPICS	COURSE OUTCOME	DEPTH REMARK	
Superconductivity	 →Know Superconducting materials: Introduction and History. →Define transition temperature, Relate temperature & resistivity. 	 Introduction Definitions 	
General Properties of superconductors	List out general Properties of superconductors.	Explanation	
Types of Superconductors	Determine types of	Explanation	
High Temperature superconductors	superconductors based on transition temperature and critical magnetic field.	Explanation	
Applications: Magnets, Josephson effect, SQUID,	Apply knowledge of superconductors in a field of SQUID, CRYOTRON, Josephson	Explanation	

UNIT				
TOPICS	COURSE OUTCOME	DEPTH REMARK		
LASER Introduction	– Comprehend the properties of	Introduction		
Characteristics of laser radiation	LASER.	Explanation		
Spontaneous and stimulated emission	Define and explain spontaneous, stimulated emission, population inversion.	Explanation Einstein's theory		
Working of LASER with basic idea about Population Inversion, Pumping mechanism, Optical Resonators	Describe working and components of a typical LASER.	Roles of components of laser		
Nd:YAG LASER		Principle Construction Working		
Applications of LASER: Medical, Industrial, Communication and other	Describe applications of laser in industry specifically welding, cutting and drilling. List out applications of LASER in other fields.	Explanation		
UNIT5: NON LINEAL	R OPTICS			
TOPICS	COURSE OUTCOME	DEPTH REMARK		
FIBER OPTICS Introduction of Optical Fiber	Explain construction of Optical Fiber.	Principle Structure		
Advantages of Optical Fiber	Fiber.	Brief explanation		
Total Internal Reflection	Define Total Internal Reflection.	Definition		
Numerical Aperture and Acceptance angle	Compute mathematical parameters required for operation of optical fiber.	Derivation		
Modes of Propagation	Understand modes of light propagation through an optical fiber.	Explanation		
Types of Optical Fiber	Classify types of optical fiber based on materials, propagations and refractive index.	Explanation		
Applications of optical fiber	Apply knowledge of Optical fiber in field of Engineering, industry and medical instrumentations.	Explanation		

UNIT6: NANOPHYSICS			
TOPICS	COURSE OUTCOME	DEPTH REMARK	
Nanoscale	Define nanomaterials,	Introduction	
Surface to volume ratio Surface effects on Nanomaterials	Understand surface to volume ratio, Surface effects of Nanomaterials,	Explanation	
Quantum size effects	\rightarrow Understand Quantum size	Explanation	
Electron confinement	effects and Electron confinement in nanomaterials.	Explanation	
Nanomaterials and Nanotechnology	→Classify among One, two and three dimensional nanoparticles and can list out its applications in technology.	Explanation	
Unusual properties of Nanomaterials	Explain Optical, Electrical, Mechanical, magnetic and chemical properties of nanomaterials.	Explanation	
Disadvantages of Nanomaterials	List out advantages and disadvantages of Nanomaterials.	Discuss	

UNIT7: ADVANCED ENGINEERING MATERIALS			
TOPICS	COURSE OUTCOME	DEPTH REMARK	
SHAPE MEMORY ALLOYS Introduction, Synthesis, Properties and Applications	Explore the knowledge on shape memory materials. Discuss shape memory effect and special features of SMA. Understand different characterization tools to explore the phase transformation temperatures. List out commercial applications of SMA.	 Principle of phase transformation Hysterisis Two way SMAs Pseudo Elastic Effect Thermoelestic properties Applications 	
METALLIC GLASSES Introduction, Synthesis, Properties and Applications	Understand the principle, preparation, properties and application of metallic glasses. Discuss important applications of metallic glasses in different fields. Comprehend about biomaterials.	 Principle Preparation Structural prop. Mechanical prop. Electrical prop. Magnetic prop. Chemical prop. List of applications 	

UNIT7: ADVANCED ENGINEERING MATERIALS				
TOPICS	COURSE OUTCOME	DEPTH REMARK		
BIO MATERIALS Introduction, Synthesis, Properties and Applications	Classify biomaterials based on their properties. Understand the properties of biomaterials and their applications.	 Introduction Bio-inert Bio-active Bio-degradable 1st,2nd,3rd generation Metals & alloys Polymers Hydrogels Composites Ceramics List of applications 		
ENERGY MATERIALS Solar cells Fuel cells (H2O2, Lithium cell) Ultra capacitors	Explain Principle, Working and applications of Solar cells, Fuel cells and Ultracapacitors.	 Principle Working Applications 		

