
GUJARAT TECHNOLOGICAL UNIVERSITY

MASTER OF COMPUTER APPLICATION (COURSE CODE-6)

Year – II (Semester – IV) (W.E.F. 2013-14)

Subject Name: Programming Skills VI (FON)

Subject Code: 2640011

General Instructions for Faculty Members/Lab Instructors:

 All the programs mentioned in this list are to be performed in GNU C /Linux/Unix

environment

 These programs are intended to simulate various aspects like flow control, error control

and various ARQs of the LLC sub-layer protocols

 Two separate programs have to be created. The sender and the receiver.

 The sender and receiver communicate with each other using the Linux IPC mechanism

Named Pipes/FIFO. The no. of pipes to be created depends upon the application.

 Bitwise operators should be used wherever applicable. Eg. To corrupt bit/s at particular

position/s in error detection/correction programs.

 Various Systems Calls like read(), write(), open(), delay(), etc, may be used.

 Students should be exposed to good programming practices/best practices for the given

development environment.

 Students should be made aware about the different design alternatives for a given

program and the implications of adapting a particular design approach on the program

efficiency/performance.

 Students should be encouraged to develop generalized solutions as far as possible.

 This list, as mentioned, is indicative. Programs other than those in the list, based on

similar concepts and content of the syllabus, might be asked in the practical exam.

FRAMING TECHNIQUES:

Byte Stuffing

1. Implement a Program in GNU C which demonstrates byte-stuffing framing technique,

where sender reads data from a text file, encapsulates the read data in a frame, applies

byte stuffing to the frame and sends it to receiver. Assume appropriate character for flag

byte and stuff byte. Sender should display the frame data before stuffing and after

stuffing for each frame transmitted. Receiver should display the received frame data

before de-stuffing and after de-stuffing for each frame. Receiver should keep on storing

the de-stuffed frame data in an external file. At the end, the data file contents of the

sender and the receiver should match. For sender/receiver communication use IPC

mechanism FIFO/Named Pipes in Linux/Unix environment. Use Bit-Wise operators in C

wherever applicable. Consider a simplistic frame structure consisting of only flag bytes

and frame data. All other fields like FCS, etc. are to be neglected. Use appropriate data-

types for various variables/frame structure. Take appropriate frame size and file sizes.

Test the program for arbitrary sequences of flag byte/stuff byte/other data combinations

in the sender side data file.

Bit Stuffing

2. Implement a Program in GNU C which demonstrates bit-stuffing framing technique,

where sender reads data from a text file, encapsulates the read data in a frame, applies bit

stuffing to the frame and sends it to receiver. Consider the character 01111110 (binary)

for flag byte. Sender should display the frame data before bit stuffing and after bit

stuffing for each frame transmitted. Receiver should display the received frame data

before de-stuffing and after de-stuffing for each frame. Receiver should keep on storing

the de-stuffed frame data in an external file. At the end, the data file contents of the

sender and the receiver files should match. For sender/receiver communication use IPC

mechanism FIFO/Named Pipes in Linux/Unix environment. Use Bit-Wise operators in C

wherever applicable. Consider a simplistic frame structure consisting of only flag bytes

and frame data and neglect all other fields like FCS, etc. Use appropriate data-types for

various variables/frame structure. Take appropriate frame size and file sizes. Test the

program for arbitrary bit sequences in the sender side data file.

Character Count

3. Implement a Program in GNU C which demonstrates character count based framing

technique, where sender reads data from a text file, encapsulates the read data in a frame,

applies character count in the designated character count field in the frame and transmits

it to receiver. Sender should display the frame data along with the character count before

transmission to the receiver for each frame. Receiver should display the received frame

data along with received character count for each frame. Receiver should keep on storing

the frame data in an external file. At the end, the data file contents of the sender and the

receiver should match. For sender/receiver communication use IPC mechanism

FIFO/Named Pipes in Linux/Unix environment. Use Bit-Wise operators in C wherever

applicable. Consider a simplistic frame structure consisting of only frame data and

character count field. All other fields like flag bytes, FCS, etc. are to be neglected. Use

appropriate data-types for various variables/frame structure. Take appropriate frame size

and file sizes. Test the program for normal scenario as well as error scenario where the

character count field is corrupted. Demonstrate the effect of corruption of character count

field during transmission assuming there is no error detection mechanism.

ERROR DETECTION/CORRECTION TECHNIQUES

(In this program category, students may be asked to simulate different noise scenarios like single

bit corruption, multi-bit corruption, etc. and check whether the receiver , using the given error

detection/correction technique, is able to detect/correct the error.)

 Single Bit Parity (VRC) method

1. Implement a Program in GNU C which demonstrates the Single Bit Even Parity Method

(VRC). The sender reads a single ASCII character from K/B, applies the parity bit logic

as applicable, encapsulates the character in a frame and transmits the frame to the

receiver. Sender should display the ASCII character on screen before and after applying

the parity bit logic. Receiver should apply the necessary parity logic and subsequently

decide whether there is error or not. If, as per the receiver, there is an error, it should

display an appropriate error message on screen else it should display the original

character (as per the receiver). Create Bit corruption routines on the sender side in the

program and accordingly demonstrate those bit error scenarios for which this method

works and also those bit error scenarios for which this method fails. For sender/receiver

communication use IPC mechanism FIFO/Named Pipes in Linux/Unix environment. Use

Bit-Wise operators in C wherever applicable. Consider a simplistic frame structure

consisting of only frame data (of single character). All other fields of frame are to be

neglected. Use appropriate data-types for various variables/frame structure. Take

appropriate frame size.

Block Parity (LRC) Method

2. Implement a Program in GNU C which demonstrates the Block Parity (LRC) Method

(for Even Parity). The sender reads an ASCII character string from K/B, applies the block

parity logic as applicable, encapsulates the character string in a frame and transmits the

frame to the receiver. Sender should display the ASCII character string on screen before

and after applying the block parity logic. Receiver should apply the necessary block

parity logic and subsequently decide whether there is error or not. If, as per the receiver,

there is an error, it should display an appropriate error message on screen else it should

display the original character string (as per the receiver). Create Bit corruption routines

on the sender side in the program and accordingly demonstrate those bit error scenarios

for which this method works and also those bit error scenarios for which this method fails.

For sender/receiver communication use IPC mechanism FIFO/Named Pipes in

Linux/Unix environment. Use Bit-Wise operators in C wherever applicable. Assume a

simplistic frame structure consisting of only frame data (ASCII character string). All

other fields of frame are to be neglected. Use appropriate data-types for various

variables/frame structure. Take appropriate frame size.

Validity of CRC Divisor

3. Implement a Program in GNU C which determines whether a given Divisor is valid for

CRC. The Divisor is to be entered in binary format from K/B. The sender encapsulates

this data in a frame and transmits it to the receiver. The receiver applies the validation

logic for CRC divisor and accordingly displays appropriate validation message on screen.

For sender/receiver communication use IPC mechanism FIFO/Named Pipes in

Linux/Unix environment. Use Bit-Wise operators in C wherever applicable. Consider a

simplistic frame structure which encapsulates only the divisor information. All other

fields of frame are to be neglected. Use appropriate data-types for various variables/frame

structure. Take appropriate frame size.

CRC 16

4. Implement a Program in GNU C which demonstrates the CRC 16 checksum Method.

Hard-Code the corresponding Divisor value (G(x)) for CRC 16 for both the sender and

receiver. The sender reads an ASCII character string from K/B, computes the

corresponding CRC 16 checksum, encapsulates the data and the CRC checksum in the

frame and transmits the frame to the receiver. Sender should display the CRC 16

checksum value on screen before transmission. Receiver should apply the necessary CRC

16 logic and subsequently decide whether there is error or not. If, as per the receiver,

there is an error, it should display an appropriate error message on screen else it should

display the original character string. Create Bit corruption routines on the sender side in

the program and accordingly Test the program for arbitrary single bit errors as well as

burst errors (both even and odd bit errors) and record your observations. For

sender/receiver communication use IPC mechanism FIFO/Named Pipes in Linux/Unix

environment. Use Bit-Wise operators in C wherever applicable. Consider a simplistic

frame structure consisting of only frame data (ASCII character string) and checksum field.

All other fields of frame are to be neglected. Use appropriate data-types for various

variables/frame structure. Take appropriate frame size.

5. Repeat above program no. 4 for CRC-32.

6. Repeat above program no. 4 for any valid CRC Divisor of your own choice.

1’s Complement based Checksum

7. Implement a Program in GNU C which demonstrates the 1’s complement based

checksum Method. The sender reads an ASCII character string from K/B, computes the

corresponding 1’s complement checksum, encapsulates the data and the one’s

complement checksum in the frame and transmits the frame to the receiver. Sender

should display the 1’s complement checksum value on screen before transmission.

Receiver should apply the necessary one’s complement based checksum logic and

subsequently decide whether there is error or not. If, as per the receiver, there is an error,

it should display an appropriate error message on screen else it should display the original

character string. Create Bit corruption routines on the sender side in the program and

accordingly test the program for arbitrary single bit errors as well as burst errors (both

even and odd bit errors) and record your observations. For sender/receiver

communication use IPC mechanism FIFO/Named Pipes in Linux/Unix environment. Use

Bit-Wise operators in C wherever applicable. Consider a simplistic frame structure

consisting of only frame data (ASCII character string) and checksum field. All other

fields of frame are to be neglected. Use appropriate data-types for various variables/frame

structure. Take appropriate frame size.

Hamming Code (for single bit error correction)

8. Implement a Program in GNU C which demonstrates the Hamming Code method. The

sender reads an ASCII character from K/B, computes the corresponding Hamming Code

and encapsulates the Hamming codeword into a frame and transmits the frame to the

receiver. Sender should display the bit pattern of the codeword on screen before

transmission. Receiver should apply the necessary Hamming code logic and identify

whether there is an error or not. In case of no error, it should display the original

character on screen. In case of error, it should display appropriate error message and also

the bit position of the corrupted bit. Receiver should correct the error and then display the

corrected character on screen. Create single Bit corruption routines on the sender side in

the program and accordingly test the program for arbitrary single bit error positions and

record your observations. For sender/receiver communication use IPC mechanism

FIFO/Named Pipes in Linux/Unix environment. Use Bit-Wise operators in C wherever

applicable. Consider a simplistic frame structure consisting of only the Hamming Code

Word for the given ASCII character. All other fields of frame are to be neglected. Use

appropriate data-types for various variables/frame structure. Take appropriate frame size.

Hamming Code for Burst Error Correction of known size

9. Modify the above program no. 8 for dealing with burst errors of known size.

DATA LINK LAYER PROTOCOLS

1. Protocol for an Ideal Channel and Ideal Nodes

Implement a Program in GNU C in which the sender reads data from a given file,

encapsulates the data in a frame and transmits the frame to the receiver. This goes on till

all the data is read from the file. The receiver goes on receiving the frames, de-capsulate

the data from frame and store the data in a separate file. At the end, the original data file

at the sender’s end and the contents of the file at the receiver’s end should tally. For

sender/receiver communication, use IPC mechanism FIFO/Named Pipes in Linux/Unix

environment. Use Bit-Wise operators in C wherever applicable. Consider a simplistic

frame structure consisting of only frame data (ASCII character string). All other fields of

frame are to be neglected. Use appropriate data-types for various variables/frame

structure. Take appropriate frame size and file sizes. Assume an ideal situation where the

channel is noiseless and receiver node has infinite system resources.

2. One Way Stop and Wait Protocol for Noiseless channel and Slow Receiver

Implement a Program in GNU C to demonstrate the working of the stop and wait

protocol for a noiseless channel and a slow receiver. The sender reads data from a given

file, encapsulates the data in a frame and transmits the frame to the receiver. The receiver

receives the frame, de-capsulate the data from frame and stores the data in a separate file.

Then the receiver transmits a dummy acknowledgement frame to the sender. Dummy in

the sense, the contents of the acknowledgement frame is not important. It could be

garbage. On receipt of the dummy acknowledgement frame from the receiver, the sender

transmits the next frame. This goes on till all the data is transmitted by the sender from

the sender side file. At the end, the original data file at the sender’s end and the contents

of the file at the receiver’s end should tally. For sender/receiver communication, use IPC

mechanism FIFO/Named Pipes in Linux/Unix environment. Use Bit-Wise operators in C

wherever applicable. Consider a simplistic frame structure consisting of only frame data

(ASCII character string). All other fields of frame are to be neglected. Use appropriate

data-types for various variables/frame structure. Take appropriate frame size and file

sizes. Assume that the channel is noiseless and the receiver to be having slower

processing speed then the sender.

3. One Way Stop and Wait Protocol for Noisy channel and Slow Receiver

Implement a Program in GNU C to demonstrate the working of the stop and wait

protocol for a noisy channel and a slow receiver. The sender reads data from a given file,

encapsulates the data in a frame and transmits the frame to the receiver. The sender starts

a timer immediately upon transmitting the frame to the receiver. The receiver receives the

frame and checks the frame for errors. If the frame is error free, the receiver sends a

positive acknowledgement back to the sender. If the frame is erroneous, the receiver

doesn’t send positive acknowledgement back to the sender. In case of error free frame,

the receiver de-capsulate the data from frame and stores the data in a separate file. On

receipt of the positive acknowledgement frame from the receiver, the sender transmits the

next frame.

In case of erroneous frame reaching the receiver, the sender times out and transmits the

same frame again to the receiver. This goes on till all the data is transmitted by the sender

from the sender side file. At the end, the original data file at the sender’s end and the

contents of the file at the receiver’s end should tally. For sender/receiver communication,

use IPC mechanism FIFO/Named Pipes in Linux/Unix environment. Use Bit-Wise

operators in C wherever applicable. Consider a simplistic frame structure consisting of

only data frame sequence no., acknowledgement frame sequence no. and frame data

(ASCII character string). All other fields of frame are to be neglected. Use appropriate

data-types for various variables/frame structure. Take appropriate frame size and file

sizes. Assume that the channel is noisy and the receiver to be having slower processing

speed then the sender. Set appropriate timeout value for timer. Simulate an error scenario

whereby 25% of the data frames transmitted by the sender are corrupted. The error

scenario should be created by simply generating random number based logic at receiver

and accordingly treating the arrived frame to be corrupted or not.

Logic for deciding whether arrived acknowledgement is corrupted or not should also be

developed on similar lines on sender side. FCS (Frame Check Sequence) of any kind is

NOT expected for this program. Also assume that data frames sent by the sender never

get lost and the acknowledgements sent by the receiver are never lost or corrupted. At the

end of the program, inspect the data file contents at the receiver side to ensure that there

is no data omission or duplication even in wake of errors.

i. Modify the above program no. 3 in which instead of 25%, 33% data frames get

corrupted.

ii. Modify the above program no. 3 to simulate a scenario in which 25% of data frames get

lost. However, assume that data frames never get corrupted. All other assumptions

remain as they are.

iii. Modify the above program no. 3 to simulate a scenario where 33% of

acknowledgement frames get lost. However, assume that data frames never get lost or

corrupted and acknowledgement frames never get corrupted.

iv. Modify the above program no. 3 to simulate a scenario where 25% of

acknowledgement frames get corrupted. However, assume that data frames never get

lost or corrupted and acknowledgement frames never get lost.

v. Modify the above program no. 3 to simulate delayed acknowledgements. Then

demonstrate that by appropriate increase in time-out value, how the delayed

acknowledgements are correspondingly reduced.

vi. Modify the above program no. 3 in which the receiver sends a negative

acknowledgement to the sender in wake of a corrupted frame instead of passively

waiting for a time-out. Demonstrate the increase in system throughput after

implementing this scheme.

4. One Way Go Back n Protocol for Noisy channel and Slow Receiver

Implement a Program in GNU C to demonstrate the working of the Go Back n Protocol

for a noisy channel and a slow receiver. The sender reads data from a given file,

encapsulates the data in a frame and transmits the frame to the receiver. The sender sends

multiple frames to the receiver as per go back n protocol. The sender starts a timer

immediately upon transmitting the frame to the receiver for each frame. The receiver

receives each frame and if it is error free, transmits a positive acknowledgement frame

back to the sender. The receiver de-capsulate the frame and stored the transmitted data

into an external file. In case of erroneous frame, the receiver doesn’t respond and waits

for the time out. Assume that the channel is Noisy and the receiver is slow. Decide an

appropriate value for the no. of frames to be pipelined at a time (Batch Size).

Demonstrate that when a given frame is corrupted, all frames prior to the corrupted frame

which were successfully accepted without error by receiver are also retransmitted. At the

end, the original data file at the sender’s end and the contents of the file at the receiver’s

end should tally. For sender/receiver communication, use IPC mechanism FIFO/Named

Pipes in Linux/Unix environment. Use Bit-Wise operators in C wherever applicable.

Consider a simplistic frame structure consisting of only data frame sequence no.,

acknowledgement frame sequence no. and frame data (ASCII character string). All other

fields of frame are to be neglected. FCS (Frame Check Sequence) of any kind is NOT

expected for this program. Use appropriate data-types for various variables/frame

structure. Take appropriate frame size and file sizes. Assume that the channel is noisy and

the receiver to be having slower processing speed then the sender. Set appropriate

timeout value for timer. Simulate an error scenario whereby 25% of the data frames

transmitted by the sender are corrupted. The error scenario should be created by simply

generating random number based logic at receiver and accordingly treating the arrived

frame to be corrupted or not. Logic for deciding whether arrived acknowledgement is

corrupted or not should also be developed on similar lines on sender side. Also assume

that data frames sent by the sender never get lost and the acknowledgements sent by the

receiver are never lost or corrupted. The acknowledgements are cumulatively treated by

the sender. At the end of the program, inspect the data file contents at the receiver side to

ensure that there is no data omission or duplication even in wake of errors.

i. Modify the above program no .4 to simulate a scenario where 33% of

acknowledgements are corrupted. Assume that data frames never get lost or corrupted

and acknowledgement frames never get lost.

ii. Modify the above program no. 4 to simulate a scenario where 25% of

acknowledgements are lost. Assume that data frames never get lost or corrupted and

acknowledgement frames never get corrupted.

iii. Modify the above program no. 4 to simulate a scenario where 33% of data frames are

lost. Assume that data frames never get corrupted and acknowledgement frames never

get lost or corrupted.

iv. Implement two way (bi directional) versions of above program no. 4 and all its

modifications i, ii and iii.

5. One Way Selective Repeat Protocol for Noisy channel and Slow Receiver

Implement a Program in GNU C to demonstrate the working of the Selective Repeat

protocol for a noisy channel and a slow receiver. The sender reads data from a given file,

encapsulates the data in a frame and transmits the frame to the receiver. The sender sends

multiple frames to the receiver as per predefined batch size. The sender starts a timer

immediately upon transmitting the frame to the receiver for each frame. The receiver

receives each frame and if it is error free, transmits a positive acknowledgement frame

back to the sender. The receiver de-capsulate the frame and stored the transmitted data

into an external file. In case of erroneous frame, the receiver sends a negative

acknowledgement to the sender.

On receipt of negative acknowledgement or in case of time out, the sender retransmits the

corresponding frame again. Assume that the channel is Noisy and the receiver is slow.

Decide an appropriate value for the no. of frames to be pipelined at a time (Batch Size).

Demonstrate that when a given frame is corrupted, all frames prior to the corrupted frame

which were successfully accepted without error by receiver are retained by the receiver

and receiver sends negative acknowledgement to the sender only for the corrupted frame.

At the end, the original data file at the sender’s end and the contents of the file at the

receiver’s end should tally. For sender/receiver communication, use IPC mechanism

FIFO/Named Pipes in Linux/Unix environment. Use Bit-Wise operators in C wherever

applicable. Consider a simplistic frame structure consisting of only data frame sequence

no., acknowledgement frame sequence no. and frame data (ASCII character string). All

other fields of frame are to be neglected. FCS (Frame Check Sequence) of any kind is

NOT expected for this program. Use appropriate data-types for various variables/frame

structure. Take appropriate frame size and file sizes. Assume that the channel is noisy and

the receiver to be having slower processing speed then the sender. Set appropriate

timeout value for timer. Simulate an error scenario whereby 25% of the data frames

transmitted by the sender are corrupted. The error scenario should be created by simply

generating random number based logic at receiver and accordingly treating the arrived

frame to be corrupted or not. Logic for deciding whether arrived acknowledgement is

corrupted or not should also be developed on similar lines on sender side. Also assume

that data frames sent by the sender never get lost and the acknowledgements sent by the

receiver are never lost or corrupted. The acknowledgements are cumulatively treated by

the sender. At the end of the program, inspect the data file contents at the receiver side to

ensure that there is no data omission or duplication even in wake of errors.

i.Modify the above program no. 5 to simulate a scenario where 33% of

acknowledgements are corrupted. Assume that data frames never get lost or corrupted

and acknowledgement frames never get lost.

ii.Modify the above program no. 5 to simulate a scenario where 25% of

acknowledgements are lost. Assume that data frames never get lost or corrupted and

acknowledgement frames never get corrupted.

iii.Modify the above program no. 5 to simulate a scenario where 33% of data frames are

lost. Assume that data frames never get corrupted and acknowledgement frames never

get lost or corrupted.

iv.Implement two way (bi directional) versions of above programs no. 5 and all its

modifications i. ii and iii.. Include the feature of piggybacking in these programs.

Reference Books for Practical:

1. W. Richard Stevens, “Advanced Programming in Unix Environment”, Pearson Education

Publications ,Second Edition (to study how system calls can be used)

2. Vijay Mukhi, “C Odyssey: Unix the open Boundless C”, BPB Publications, Paperback

Edition (1992) (for learning how to read and write data using named pipes)

Accomplishments of the student after completing the Course:

1. Understand and use the process of protocols and other techniques using C’ under Linux

environment

2. Analyze and develop protocol/algorithm to solve real problems

3. Able to implement various protocols, Framing Techniques, Error detection and correction

techniques.

