Subject: - Advanced Structural Analysis

Sr. No.	Course Content
1	Introduction: Principles of Virtual Work. Concepts of Flexibility:
	Analysis of Pin jointed and Rigid Jointed Frames, Grids by Member
	Approach
2	Stiffness methods: Analysis of Plane truss, plane frames, grids, space
	truss, space frame and composite structures by member approach.
	Special problems such as member discontinuities, non prismatic
	members, curved members, and beams on elastic supports, secondary
	effects due to temperature changes, Pre-strains and end displacements
	semi- rigid connections, plastic analysis, and effect of shear
	deformations by stiffness method, sub-structuring, Programming
	techniques for solution of large number of simultaneous equations.
3	Introduction to Non-linearity in structure and non-linear analysis.

- 1. Weaver William, Gere James M., "Matrix analysis of Framed Structure", CBS Publishers, 1/e/1986
- 2. Wang C. K., "Intermediate Structural Analysis", McGraw Hill Co. (International Edition)
- 3. Jenkins W. W., "Matrix and Digital Computer Methods in Structural Analysis", McGraw Hill.

Civil Engineering (Structural Engineering)

Subject: - Structural Dynamics

Sr. No	Course Content
1	Free and forced vibration of single degree of freedom (SDOF) system,
	response to Harmonic, periodic, impulsive and general dynamic
	loading on an element. Response of SDOF to earthquake. Numerical
	integration Techniques.
2	Free vibration of lumped, multidegree of freedom (MDOF) system -
	Approximate methods for obtaining natural frequencies and mode
	shapes.
3	Free and forced vibration of continuous multidegree of freedom
	system.
4	Shear building analysis.

- 1 Clough and Penzien, "
- 2 .Dynamics of Structures", McGraw Hill, Kogokusha
- 3 Mario Paz, "Structural Dynamics-Theory and computations", 2/e/1999, CBS Publishers.
- 4 Mukhopadhyay Mandhujit, "Vibrations, Dynamics and Stgructural Systems", Oxford and IBH, 1/e/2000
- 5 Chopra Anil K., "Dynamics of Structures- Theory and Applications to Earthquake Engg.", Prentice Hall, India, 2/e/2002

Civil Engineering (Structural Engineering)

Subject: -Theory of Elasticity and Stability

Sr. No	Course Content
1	Theory of Stresses: State of stress and strain at a point in two and
	three dimensions, stress and strain invariants, Hook's law, Plane stress
	and plain strain problems. Equations of equilibrium, boundary
	conditions, compatibility conditions, Airy's stress function. Two
	dimensional problems in Cartesian and polar coordinates, Saint
	Venant's principle, solution of beam problems. Torsion for non-
	circular sections and curved elements.
2	Classification based on Geometry, Stiffness, Materials etc. Structural
	elements-Fundamental behaviour of various types. Parameters of
	Safety and Stability: form, function, strength and stiffness. Analysis of
	structural elements. Buckling, post-buckling of columns, beams and
	frames.

- 1. Schodek Daniel L, "Structures", 4/e/2002, Prentice Hall of India
- 2. Parikh Janak P, "Structural Analysis and Design", 1/e/2000, Charotar Pub. House
- 3. Ashwinikumar, "Stability of Structures", Allied Publishers, 1/e/1998
- 4. Timoshenko SP and Gere JM, "Theory of Elastic Stability", McGraw Hill, 1/e/1961
- 5. Wang C. K., "Applied Elasticity", McGraw Hill,
- 6. Venkatraman B & Patel A, "Structural Mechanic with introduction to Elasticity and Plasticity", McGraw Hill, 2/e/1970
- 7. Junnarkar SB & Shah HJ, "Mechanics of Structures Vol.-II, Charotar Publishers, 5/e/2002

Civil Engineering (Structural Engineering)

Subject: - Computer Lab For Analysis

Sr. No	Course content
1	Analysis of Structures like Truss, Continuous Beams, portal frames
	by Excel spread sheets OR any other means.
2.	Software Usage: Modeling and Analysis using professional software
	like STAAD, STRAP etc.

Civil Engineering (Structural Engineering)

Subject: - Numerical Methods (Major Elective I)

Sr, No.	Course Content
1	Error analysis, types of errors, accuracy & precision, stability in
	numerical analysis
2	Interpolation & extrapolation, general, interpolation formulae, numerical differentiation & integration.
3	Solution of non – linear algebraic equations, Newton – Raphson
	iterative method, numerical solutions of ordinary differential
	equations and partial differential equations using finite difference
	technique, its applications to structural engineering problems.
4	Solution of Eigen value problems, iterative methods & transformation
	methods. Applications to Structural Dynamic problems, stress
	problems, buckling of columns.
5	Laplace transform methods, Laplace equation - Properties of harmonic
	functions - Fourier transform methods for Laplace equation.
6	Euler's equation - Functional dependant on first and higher order
	derivatives

- 1. Numerical methods in Engineering Salvadori & Baron
- 2. Numerical Methods in Finite Element Analysis Bathe & Wilson
- 3. Advanced Mathematics Kresysig
- 4. Numerical Analysis Scarborough

Civil Engineering (Structural Engineering)

Subject: - Pre-Stressed Concrete (Major Elective I)

Sr. No.	Course Content
1.	Introduction: Principles of pre-stressing - types and systems of
	pre-stressing, need for High Strength materials, Loading stages,
	Determination of losses, deflection (short-long term), camber,
	cable layouts.
2.	Behavior under flexure - IS codal provisions, ultimate strength,
	Design of flexural members including large span slabs and beams.
3.	Design for Shear, bond and torsion. Design of End blocks
4.	Design of tension members - application in the design of pre-
	stressed pipes and pre-stressed concrete cylindrical water tanks.
5.	Design of compression members with and without flexure - its
	application in the design piles.
6.	Composite beams - analysis and design, ultimate strength – their
	applications. Partial pre-stressing - its advantages and applications.
7.	Application of pre-stressing in continuous beams, concept of
	linear transformation, Concordant cable profile and cap cables.

- 1. Prestressed concrete Krishna Raju
- 2. Design of Prestressed Concrete Structures T.Y.Lin
- 3. Fundamentals of Prestressed Concrete N.C.Sinha & S.K.Roy S.Chand & Co.,1985.
- 4. Prestressed Concrete- Design and Construction Leonhardt.F., Wilhelm Ernst and Shon, Berlin
- 5. Prestressed Concrete Freyssinet
- 6. Prestressed Concrete, Evans, R.H. and Bennett, E.W., Chapman and Hall

Civil Engineering (Structural Engineering)

Subject: - Finite Element Method

Sr. No	Course Content
1	Introduction, concept and solution procedure for finite element
	method.
2	Computation of element properties like using generalized co-ordinates
	for one and two dimensional elements. Beam bending, plate bending
	and axisymmetry problems.
3	Isoparametric elements. Lagrangian and Hermitian interpolation
	functions.
4	Application of finite element method in structural mechanics.
	Dynamic Programming Organization of FEM problem.
5	Pre and Post processing introduction to FEM packages like NISA,
	ANSYS etc.

- 1 Zienkiewicz O C., "The Finite Element Method", McGraw Hill, 14/e/1999.
- 2 Desai C. S. & Abel J. F., "Introduction to the Finite Element Method", First Indian Edn. 1987
- 3 Krishnamoorthy C.S.. "Finite Element Analysis", Tata McGraw Hill.
- 4 Bathe & Wilson, "Numerical Methods in Finite Element Analysis", Prentice Hall of India.
- 5 Chandrupatla R.R & Belegundu A.D.,"Introduction to Finite Elements in Engineering", Prentice Hall of India, 2/e/2000.

Subject: - Advanced Concrete Structures

Sr. No	Course Content
1	Flat slabs: Proportioning, analysis by direct design method and
	equivalent frame method, slab design and detailing.
2	Grid floors: Analysis and design by Rankine Grashoff Method,
	classical equivalent plate theory and IS:456 method.
3	Multi storied Buildings: Determination of dead load, live load, wind
	load and earthquake load on various components of the buildings and
	appropriate design. Detailing of reinforcement and bar bending
	schedule.
4	Foundations: Combined footing subjected torsion. Design of rafts.
	Design of pile caps.
5	Design of domes with openings.
6	Analysis and design of Folded plate roofs.
7.	Water Tanks: Shaft supported elevated water tanks. Column supported
	water tanks along with appropriate bracing systems.

- 1 Jain & Jaikrishna, "Plain & Reinforced Concrete Structures, vol.- I & II", Memchand & Bros, 12/e/1999
- 2 N. Krishna Raju, "Advanced Reinforced Concrete Design", CBS Publications, 1/e/1986.
- 3 Varghese AV,"Limit State Design of Reinforced Concrete", Prentice Hall of India, 1/e/2002.
- 4 Dayaratnam P et all, "Cable stayed, supported and Suspension Bridges", Indian Institure of Bridge Engineers Universities Press, 1/e1997
- 5 Varghese AV,"Advanced Reinforced Concrete", Prentice Hall of India.
- 6 IS Codes : IS-456, IS-875, IS-1893, IS-4326, IS-13920

Civil Engineering (Structural Engineering)

Subject: - Computer Lab For Design

Sr. No	Course content
1	Design of Structural elements like Beam, Column, Slab and
	Foundations using Excel spread sheets or other suitable
	means.
2.	Software Usage: Design of various structural components
	using professional software like STAAD, STRAP etc.

Subject: - Structural Design Project

Students are required to carry out following in laboratory hours,

Sr. No.	Course Contents
1	Design of Earthquake & Wind resistant RCC High-rise building
	with Shear walls.
2.	Design Of Bunkers and Silos.
3.	Design of Industrial Shed with steel or RCC gable frame.

Reference Books :

- 1. Earthquake Resistant Design Manish Shrikhande & Pankaj Agrawal
- 2. Plain & Reinforced Concrete Vol. II Jain & Jaikrishna
- 3. Advanced reinforced concrete design P. C. Verghese
- 4. Design of Steel Structures Arya A. S
- 5. IS-456(2000), IS-800(2007), IS-875(1987), IS-1893(2002),
- 6. IS-13920(1993), IS-3370, SP-16, SP-34.
- 7. IITK-GSDMA guidelines for design of water retaining structures

Subject: - Advanced Foundation Engineering (Major Elective II)

Sr. No.	Course Content
1.	General requirements as per relevant IS code, bearing capacity
	computations as per relevant IS code including bearing capacity of
	stratified deposits, settlement computations as per relevant IS
	code, use of field tests like SPT
2.	Shallow foundations: different types, proportioning of footings for
	equal contact pressures, eccentrically loaded footings, soil design
	of combined footings, strap footing
3.	Rafts: different types, bearing capacity and settlement
	computations of raft on different soil deposits, determination of
	contact pressure under raft; concept of floating foundation
	basement raft, buoyancy raft
4.	Pile foundation: lateral load capacity of a pile, settlement analysis
	of pile group, under reamed piles, IS code provisions, pile load
	test
5.	Well foundations: different types, stability analysis
6.	Machine foundations: dynamic soil properties, natural frequency
	of machine foundation-soil system, different types of machine
	foundations, static and dynamic criteria for soil-foundation
	system, design of block foundations per IS code.
7.	Foundations on expansive soils, under reamed piles, waffle
	slab/raft, concept of CNS layer, chemical stabilization etc.
8.	Rigid retaining structures

- 1. Kaniraj SR,"Design Aids in Soil Mech. And Foundation Engg.", Tata McGraw Hill.
- 2. Swami Saran, Gopal Ranjan, "Analysis & Design of Foundaions & Retaining Structures", Sarita Prakashan.
- 3. Nainan P Kurian, "Design of Foundation Systems", Narose Pub. House.
- 4. J. E. Bowles, "Foundation Analysis and Design", McGraw Hill .

Subject: - Rehabilitation of structures (Major Elective II)

Sr. No.	Course Content
1.	Durability of concrete: Factors affecting durability of concrete,
	Corrosion of reinforcements in concrete, Carbonation, Chloride
	ingress, Alkali-silica
	reaction, Freeze-thaw effects, Chemical attack, Abrasion, erosion
	and cavitation, Weathering and efflorescence
2.	Defects and deterioration in buildings, Survey and assessment of
	structural conditions in RCC structures, Masonry buildings and
	Steel structures
3.	Non-destructive testing of concrete quality, Non-destructive
	testing of connections in steel, Corrosion assessment in
	reinforcements in RCC elements and components in steel
	structures
4.	Materials for repairs, rehabilitation and retrofitting processes,
	Methods for repairs, rehabilitation and retrofitting including
	surface preparation, Study of failures of buildings and lesson
	learnt, Role of quality control in construction as Preventive
	measures Maintenance of buildings, Strengthening of Earthquake-
	damaged buildings, Introduction to Push-over analysis

Reference Books:

- 1. Concrete Microstructures, properties and materials P Kumar Mehta and Paulo J. M. Monterio
- 2. Properties of concrete A. M. Neville
- 3. Materials for construction Lai, James, S.
- 4. Structural condition assessment Robert T. Ratay
- 5. Handbook of retrofitting earthquake damaged buildings
- 6. Learning from failure R. N. Raiker

Civil Engineering (Structural Engineering)

Subject: - Advanced steel structures (Major Elective III)

Sr. No.	Course Content
1.	Introduction: Design requirements and design process, Material
	behavior, mechanical properties under static load, fatigue failure
	under repeated load, brittle fracture under impact load, Dead loads,
	imposed loads, wind loads,
	earthquake load, earth or ground water load, indirect forces and
	combination of loads.
2.	Plastic Design: Plastic design of continuous beams, Rigid jointed
	portal frames.
3.	Multi storey building : Introduction, loading, Analysis and design
	for gravity and lateral forces like wind load, earthquake loads.
4.	Cable Suspended Structures: Concepts, tensile structures, bridges.
5.	Design of connections: Bolted and welded connections. Semi
	rigid and rigid beam-column and beam-beam connections. Beam
	and column splices.
6.	Load calculations and design of steel truss Bridges for roadways
	and railways including seismic performance.

Reference Books :

- 1. Design of Steel Structure Dayarathnam, P., A.H.Wheeler, 1990
- 2. Design of Steel Structures N. Subrhamanyan, Oxford..
- 3. Steel Structure -Design and Behaviour, Salmon, C.G., and Johnson, J.E. Harper and Row, 1980.
- 4. Steel Design for Structural Engineers Kuzamanovic,B.O. and Willems,N., Prentice Hall, 1977.
- 5. Steel Structures William McGuire, Prentice Hall, Inc., Englewood Cliffs, N.J.1986.

Subject: - Theory of Plates and Shells (Major Elective III)

Sr. No.	Course Content
1.	General theory of bending of plates. Derivation of differential
	plate equation for isotropic and orthotropic plate element
2.	analysis of isotropic plates: solution of Bi-harmonic equation by
	Navier's and Levy's methods for uniform pressure and
	concentrated point loads, strip loads and triangular loads.
3.	Particular cases or solution for rectangular and circular plates of
	different boundary conditions under uniformly distributed
	pressure.
4.	Analysis of plates by Finite difference method, Energy methods.
5.	Yield line theory of RC slab plates having different shapes,
	support conditions for uniformly distributed pressure.
6.	Shells: Classification of shells. Structural behaviour of shells with
	different boundary conditions. Membrane and bending analysis of
	Cylindrical and spherical (Domes) shells.

- 1. Timoshenko SP and Krager SW, "Theory of Plates & Shells", McGraw Hill,
- 2. Chandrasekhra K, "Theory of Plates", Universities Press,

Civil Engineering (Structural Engineering)

Subject: - Basic Concepts Of Structural Behavior (Interdisciplinary Elective I)

Sr. No.	Course Contents
1	Structures and Overview: Classification, Basic issues in analysis and
	design of structures. Types and selection of suitable structural
	system.
2.	Principles Of Mechanics: Revision of internal forces and moments.
	Mechanical properties of building materials.
3	Introduction to Structural Analysis and Design criteria of structural
	Elements like truss, Cable, arch, Beam, Column and Shell.
4.	Introduction to plate and grid structures:

REFERENCE BOOKS:

1) "Structures" Daniel L.Schodek,

Civil Engineering (Structural Engineering)

Subject: - Concrete Technology (Inter disciplinary Elective II)

Sr. No.	Course Contents
1	Cement: manufacturing of cement, chemical components,
	compounds of cement, basic equation, hydration of cement,
	structure of hydrated cement, volume of products of hydration,
	mechanical strength of cement gel, physical requirements of cement.
2.	Different types and properties of cement.
3	Different grades of concrete and their mix proportions according to
	IS recommended guide lines.
4	Introduction to different type of admixtures.
5	Aggregates: Sieve analysis and grading curves. Fineness modulus,
	grading requirements.
6	Fresh concrete: Workability of concrete, properties and testing.
	Mixing, compacting and curing requirements of concrete.
7	Strength of concrete: Properties and testing of hardened concrete.
	Destructive and nondestructive testing of concrete.

REFERENCE BOOKS :

- 1. Neville A. M. Properties of Concrete.
- 2. Gambhir M. L. Concrete Technology
- 3.

Practicals to be performed in Laboratory:

- 1. Normal consistency of cement.
- 2. Initial and final setting time of cement
- 3. Compressive strength of cement.
- 4. Fineness modulus of aggregates.
- 5. Test for workability of concrete
- 6. Compressive strength of concrete by destructive and nondestructive methods.

Students are supposed to do minimum two (2) concrete mix design in the remaining turns of laboratory as term work problems.